Microwave-assisted wet chemical synthesis: advantages, significance, and steps to industrialization


Previous research has revealed several advantages from microwave-assisted wet chemical synthesis in reaction acceleration, yield improvement, enhanced physicochemical properties and the evolvement of new material phases. The study present examples that demonstrate the significance of these advantages to industrial application. In order to achieve successful industrial application there is a need to distinguish between the microwave athermal (not excited by heat) effect from the microwave-induced thermal effect (temperature rise). The optimization of this new process has to be systematically investigated, so the advantages and benefits of this new technology can be fully exploited.

Share and Cite:

S. Shi and J. Hwang, "Microwave-assisted wet chemical synthesis: advantages, significance, and steps to industrialization," Journal of Minerals and Materials Characterization and Engineering, Vol. 2 No. 2, 2003, pp. 101-110. doi: 10.4236/jmmce.2003.22009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Kitamoto; “The past and future of the magnetic recording media”; Journal of the Japan Society of Powder and Powder Metallurgy, 45 [7] 615-617 (1998).
[2] M. Ozaki, S. Kratohvil and E. Matijevic; “Formation of monodispersed spindle -type hematite particles”; Journal of Colloid and Interface Science, 102 [1] 146-151 (1984).
[3] M. Ozaki, S. Kratohvil and E. Matijevic; “Preparation and magnetic properties of monodispersed spindle -type ?-Fe2O3 particles”; Journal of Colloid and Interface Science, 107[1] 199-203 (1985).
[4] M.P. Morales, T. Gonzalez-Carreno and C.J. Serna; “The formation of ?-Fe2O3 monodispersed particles in solution”; J. Mater. Res., 7 [9] 2538-2545 (1992).
[5] P.D. Sawant; “Characterization of hematite sols: correlation of size, shape and percentage yield”; Bull. Mater. Sci., 20 [1] 27-35 (1997).
[6] S. Komarneni, V.C. Menon and Q.H. Li; “Synthesis of ceramic powders by novel microwave-hydrothermal processing”; Ceramic Transactions, 62 1042-1122 (1996).
[7] P. Rigneau, K. Bellon, I. Zahreddine and D. Stuerga; “Microwave flash-synthesis of iron oxide nanoparticles”; The European Physical Journal Applied Physics, 7 41-43 (1999).
[8] M.S. Whittingham; “Insertion electrodes as SMART materials: the first 25 years and future promises”; Solid State Ionics, 134 169-178 (2000).
[9] M.S. Whittingham; “Electrical energy storage and intercalation chemistry”; Science, 192 [4244] 1126-7 (1976).
[10] M.S.Whittingham; “Chemistry of intercalation compounds: metal guests in chalcogenide”; Progress in Solid State Chemistry, 12 [1] 41-99 (1978).
[11] M.S. Whittingham, F.R. Gamble; “Lithium intercalates of the transition metal dichalcogenides”; Mat. Res. Bull., 10 [5] 363-371 (1975).
[12] T. Chirayil, P.Y. Zavalij and M.S. Whittingham; “hydrothermal synthesis of vanadium oxides”; Mat. Res. Soc. Symp. Proc., 453 135-140 (1997);
[13] R. Chen and M.S. Whittingham; “Cathodic behavior of alkali manganese oxides from permanganate”; Journal of the Electrochemical Society, 144 [4] 64-67 (1997).
[14] P.Y. Zavalij and M.S. Whittingham; “Structure chemistry of vanadium oxides with open frameworks”; Acta Cryst., B55 627-663 (1999).
[15] S.T. Lutta, A. Dobley, K. Ngala, S. Yang, P.Y. Zavalij and M.S. Whittingham; “Vanadium oxide nanotubes: characterization and electrochemical behavior”; Mat. Res .Soc. Symp. Proc., 703 323-328 (2002).
[16] D.W. Breck; Zeolite molecular sieves: structure, chemistry, and use, Wiley, New York 1974.
[17] E. Chomskim, O. Dag, A. Kuperman, N. Coombs, G.A. Ozin; “New forms of luminescent silicon: silicon-silica composite mesostructures”; Chemical Vapor Deposition, 2 [1] 8-13 (1996).
[18] G.A. Ozin; “Zeolate ligand: from hydrolysis to capped semiconductor nanoclusters”; Advanced Materials, 6 [1] 71-76 (1994).
[19] O. Dag, A. Kuperman and G.A. Ozin; “Nanostructures. New forms of luminescent silicon”; Advanced Materials, 7 [1] 72-8 (1995).
[20] G.A. Ozin; “Nanochemistry: synthesis in diminishing dimensions”; Advanced Materials, 4 [10], 612-49 (1992).
[21] G.A. Ozin, A. Kuperman, A. Stein; “Advanced zeolite materials science”; Angew. Chem.,101 [3] 373-390 (1989).
[22] G.D. Stucky, J.E. MacDougall; “Quantum confinement and host/guest chemistry: probing a new dimension”, Science, 247 [4943] 669-78 (1990).
[23] R. Pool; “The smallest chemical plants”; Science, 263 [5154] 1698-1699 (1994).
[24] C.-G. Wu and T. Bein; “Conducting polyaniline filaments in a mesoporous channel host”; Science, 264 [5166] 1757-91 (1994).
[25] C.-G. Wu and T. Bein; “Conducting carbon wires in ordered, nanometer-sized channels” Science, 266 [5187] 1013-15 (1994).
[26] J. Caro, F. Marlow and M. wubbenhorst; “Chromophore-zeolite composites. The organizing role of molecular sieves”; Advanced Materials, 6 [5] 413-16 (1994).
[27] F. Marlow, J. Caro, L. Werner, J. Kornatowski and S. Dahne; “Optical second harmonic generation of (dimethylamino)benzonitrile molecules incorporated in the molecular sieve AlPO4-5”; J. Phys. Chem., 97 [43] 11286-90 (1993).
[28] L. Werner, J. Caro, G. Finger and J. Kornatowski; “Optical second harmonic generation (SHG) on p-nitroaniline in large crystals of aluminophosphate AlPO4 5 and ZSM 5”; Zeolites 12 [6] 658-63 (1992).
[29] M. Ehrl, F.W. Deeg, C. Brachle, O. Franke, A. Sobbi, G. Schulz-Ekloff and D. Wohrle; “High-temperature non-photochemical hole-burning of phthalocyanine-zinc derivates embedded in a hydrated AlPO4-5 molecular sieve”; J. Phys. Chem., 98 [1] 47-52 (1994).
[30] D. Demuth, K.K. Unger, F. Schuth, G.D. Stucky and V.I. Srdanov; “Photoluminescence of chromium(III)-doped silicoaluminophosphate with AFI structure”; Advanced Materials, 6 [10] 931-4 (1994).
[31] R. Szostak; Molecular Sieves Principles of Synthesis and Identification, pp109-113; Van Nostrand Reinhold, New York, 1989.
[32] S. L. Cresswell, J. R. Parsonage, P. G. Riby and M. J. K. Thomas; “Rapid synthesis of magnesium aluminophosphate-5 by microwave dielectric heating”; J. Chem. Soc. Dalton Trans. 2315-2316 (1995).
[33] U. Oberhagemann, M. Jeschke and H. Papp; “Synthesis of highly ordered boron-containing B-MCM-41 and pure silica MCM-41”; Microporous and Mesoporous Materials; 33 165-172 (1999).
[34] M. Park and S. Komarneni; “Rapid synthesis of AlPO4-11 and cloverite by microwavehydrothermal processing”; Microporous and Mesoporous Materials, 20 39-44 (1998);
[35] J.C. Carmona, R.R. Clemente and J.G. Morales; “Comparative preparation of microporous VPI-5 using conventional and microwave heating techniques”; Zeolites, 18 340-346 (1997).
[36] I. Omae; Applications of Organometallic Compounds; pp1-4, John Wiley & Sons, Inc., New York (1998).
[37] A.w. Parkins and R.C. Poller; An Introduction to Organometallic Chemistry, pp11-19; Macmillan Publishers Ltd., London (1986).
[38] I. Omae; Applications of Organometallic Compounds; pp45-46, 76, 82, 84, 305, 307, 338,340; John Wiley & Sons, Inc., New York (1998).
[39] I. Omae; ibid; pp75, 85, 257, 261, 289, 338, 306, 321.
[40] R. Gedye, F. Smith, and K. Westaway; “Microwaves in Organic and Organometallic Synthesis”; Journal of Microwave Power and Electromagnetic Energy, 26 [1] 3-17 (1991).
[41] R. Laurent, A. Laporterie, J. Dubac and J. Berlan; “Microwave-assisted lewis acid catalysis: application to synthesis of alkyl- or arylhalogermanes”; Organometallics, 13 [6] 2493-2495 (1994).
[42] S.L. VanAtta, B.A. Duclos and D.B. Green; “Microwave-assisted synthesis of Group 6 (Cr, Mo, W) zerovalent organometallic carbonyl compounds”; Organometallics, 19 2397-2399 (2000).
[43] X. Fang, C.D. Simone, E. Vaccaro, S.J. Huang and D.A. Scola; “Ring-opening polymerization of ?-caprolactam and ?-caprolactone via microwave irradiation”; Journal of Polymer Science: Part A: Polymer Chemistry, 40 2264-2275 (2002).
[44] L.Q. Liao, L.J. Liu, C. Zhang, F. He, R.X. Zhuo and K. Wan; “Microwave-assisted ringopening polymerization of ?-caprolactone”; Journal of Polymer Science: Part A: Polymer Chemistry, 40 1749-1755 (2002).
[45] X. Fang, R. Hutcheon and D.A. Scola; “Microwave synthesis of poly(?-caprolactam-co--caprolactone)”; Journal of Polymer Science: Part A: Polymer Chemistry, 38 1379-1390 (2002).
[46] S.E. Mallakpour, A-R. Hajipour, K. Faghihi, N. Foroughifar and J. Bagheri; “Novel optically active poly(amide-imide)s with tetrahydropyrimidinone and tetrahydro-2-thioxopyrimidine moieties by microwave-assisted polycondensition”; Journal of Applied Polymer Science, 80 2416-2421 (2001).
[47] S.E. Mallakpour, A-R. Hajipour and M.R. Zamanlou; “Synthesis of optically active poly(amide-imide)s derived from N,N’-(4,4’-carbonyldiphthaloyl)-bis-L-leucine diacid chloride and aromatic diamines by microwave radiation”; Journal of Polymer Science: Part A: Polymer Chemistry, 39 177-186 (2001).
[48] K.R. Carter; “Nickel(0)-mediated coupling polymerizations via microwave-assisted chemistry”; Macromolecules, 35 [18] 6757-6759 (2002).
[49] S. Komarneni, R. Roy and Q.H. Li; “Microwave-hydrothermal synthesis of ceramic powders”; Mat. Res. Bull., 27 [12] 1393-1405 (1992).
[50] S. Komarneni, Q. Li, K.M. Stefansson and R. Roy; “Microwave-hydrothermal processing for synthesis of electroceramic powders”; J. Mater. Res., 8 [12] 3176-3183.
[51] H. Katsuki, S. Furuta and S. Komarneni; “Microwave- versus conventional-hydrothermal synthesis of hydroxyapatite crystals from Gypsum”; J. Am. Ceram. Soc., 82 [8] 2257-2259 (1999).
[52] W. Komatsu, Y. Moriyoshi and Y. Ikuma; “Development of sintering theory”; Journal of the Ceramic Society of Japan, 92 [6] 299-307 (1984).
[53] Y. Ikuma, M. Nakayama, Y. Harada and T. Hiuga; “Effect of heating rate on the shrinkage of isothermal sintering”; Journal of the Ceramic Society of Japan, International Edition, 99 [6] 466-470 (1991).
[54] A.G. Lanin, E.V. Marchev and S.A. Pritchin; “Non-isothermal sintering parameters and their influence on the structure and properties of zirconium carbide”; Ceramics International, 17 [5] 301-307 (1991).
[55] E. Matijevic; “Monodispersed colloids: art and science”; Langmuir, 2 [1] 12-20 (1986).
[56] I.S. Hudiara, “Microwave complex permitivity of water at high temperatures”, IETE Technical Review, 15 [3] 221-223 (1998).
[57] S. Ryynanen, P.O. Risman and T. Ohlsson, “The dielectric properties of native starch solutions – a research note”, Journal of Microwave power and Electromagnetic Energy, 31 [1] 50-53 (1996).
[58] T.N. Tulasidas, G.S.V. Raghavan, F. Van de Voort and R. Girard, “Dielectric properties of grapes and sugar solutions at 2.45 GHz”, Journal of Microwave power and Electromagnetic Energy, 30 [2] 118-123 (1995).
[59] G. Johri, M. Johri and J. Roberts, “Dielectric response of select ionic solutions using a load microwave cavity operating near 9 GHz, 21 GHz amd 29 GHz as a probe”, Journal of Microwave power and Electromagnetic Energy”, 26 [2] 82-89 (1991).
[60] W.P. Hargett, Jr.; “Sealing closure for high pressure vessels in microwave assisted chemistry”; US Patent, 6,287,526 (2001).
[61] http://www.boedeker.com/ultem_p.htm
[62] http://www.cem.com/
[63] C.R. Strauss, R.W. Trainor, K.D. Raner and J.S. Thorn; “Batch microwave Reactor”; U.S. Patent, 5 932 075, Aug.3, 1999.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.