Synthesis and Determination of Stability Constants of a New Bis-1,2,4-triazole Ligand for Complexation with Zinc(II), Copper(II) and Nickel(II) in Acetonitrile


In this work, the synthesis and complexation properties of a new compound, 1,3-bis[5-(2-hydroxyphenyl)-4-phenyl- 1,2,4-triazole-3-yl-thio]propane (BTP), towards certain transition metal ions, (M(II) where M = Zn, Cu, Ni) in acetonitrile is reported. A hard-modeling strategy was applied to UV-Visible spectroscopy data obtained from monitoring the reaction between BTP and the selected metal ions to determine the concentration profiles of each species and the corresponding stability constant(s) of the complex(es). The stability constants of complexes are always defined in terms of their free metal, free ligand and complexed forms. These constants are influenced by parameters such as the type of metal, ligand, counterion or solvent. In this study, the formation constants of the complexes were determined for the synthesized ligand with several metallic cations in acetonitrile solvent by UV-Vis spectrophotometry.

Share and Cite:

R. Sabzi, A. Nikoo, Y. Nikzad, M. Bahram, K. Akbari and N. Samadi, "Synthesis and Determination of Stability Constants of a New Bis-1,2,4-triazole Ligand for Complexation with Zinc(II), Copper(II) and Nickel(II) in Acetonitrile," American Journal of Analytical Chemistry, Vol. 3 No. 6, 2012, pp. 437-442. doi: 10.4236/ajac.2012.36057.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] X. He, J. J. Liu, H. M. Guo, M. Shao and M. X. Li, “Syntheses, Topological Networks and Properties of Four Complexes Based on 4-Amino-3,5-bis(3-pyridyl)-1,2,4- triazole Ligand,” Poly-hedron, Vol. 29, No. 3, 2010, pp. 1062-1068. doi:10.1016/j.poly.2009.11.011
[2] K. Liu, X. Zhu, J. Wang, B. Li and Y. Zhang, “Four Coordination Polymers Derived from 4-amino-3,5-bis(3- pyridyl)-1,2,4-triazole and Copper Sulfate,” Inorganic Chemistry Communications, Vol. 13, No. 8, 2010, pp. 976-980. doi:10.1016/j.inoche.2010.05.011
[3] Q. G. Zhai, M.C. Hu, Y. Wang, W. J. Ji, S. N. Li and Y. C. Jiang, “Synthesis and Characterizations of a Novel dia-type Ag-BPT Coordination Polymer with Tetranu-clear Motifs as Jointing Points (BPT=3,5-bis(3-pyridyl)- 1,2,4-triazole),” Inorganic Chemistry Communications, Vol. 12, No. 4, 2009, pp. 286-289. doi:10.1016/j.inoche.2009.01.011
[4] J. C. Chen, A. J. Zhou, S. Hu, M. L. Tong and Y. X. Tong, “Synthesis, Structure and Magnetic Property of a New Mixed-Valence Copper(I/II) Complex Derived from 3,5- bis(pyridin-2-yl)-1,2,4-triazole,” Journal of Molecular Structure, Vol. 794, 2006, pp. 225-229.
[5] M. H. Klingele and S. Brooker, “From N-Substituted Thioamides to Symmetrical and Unsymmetrical 3,4,5- Trisubstituted 4H-1,2,4-Triazoles: Synthesis and Characterisation of New Chelating Ligands,” European Journal of Organic Chemistry, Vol. 2004, No. 16, 2004, pp. 3422- 3434. doi:10.1002/ejoc.200400184
[6] J. J. Liu, X. He, M. Shao and M. X. Li, “Syntheses, Structures and Thermal Stabilities of Four Complexes with 4-Amino-3,5-bis(3-pyridyl)-triazole Ligand,” Jour- nal of Molecular Structure, Vol. 891, No. 1-3, 2008, pp. 50-57. doi:10.1016/j.molstruc.2008.03.011
[7] T. W. Kajdan, P. J. Squattrito and S. N. Dubey, “Coordination Geometries of Bis(4-amino-3-ethyl-1,2,4-triazole- 5-thione) Complexes of Mn, Fe, Co, Ni, Cu and Zn: Relationship to the 3-Methyl Analogs,” Inorganica Chimica Acta, Vol. 1082, 2000, pp. 300-302.
[8] A. L. Matesanz, C. Pastor and P. Souza, “Synthesis and Structural Characterization of a Disul-phide-Bridged Tetranuclear Palladium(II) Complex Derived from 3,5-Diacetyl 1,2,4-Triazole Bis(4-ethylthiosemicarbazo-ne),” Inorganic Chemistry Communications, Vol. 10, 2007, pp. 97-100. doi:10.1016/j.inoche.2006.09.016
[9] X. F. Xie, S. P. Chen, Z. Q. Xia and S. L. Gao, “Construction of Metal-Organic Frameworks with Transitional Metals Based on the 3,5-Bis(4-pyridyl)-1H-1,2,4-triazole Ligand,” Polyhedron, Vol. 28, No. 4, 2009, pp. 679-688. doi:10.1016/j.poly.2008.12.046
[10] M. S. Dyaz-Cruz, J. M. Dyaz-Cruz, J. Mendieta, R. Tauler and M. Esteban, “Soft- and Hard-Modeling Approaches for the Determination of Stability Constants of Metal-Peptide Systems by Voltammetry,” Analytical Biochemistry, Vol. 279, No. 2, 2000, pp. 189-201.
[11] A. Abbaspour and M. A. Kamyabi, “Characterization and Determination of Stability Constants of Cop-per(II)-l-histidine Complexation System by Using Multivariate Curve Resolution Method of Visible Spectra and Two Hard Modeling Methods in Aqueous Solutions,” Analytica Chimica Acta, Vol. 512, No. 2, 2004, pp. 257-269. doi:10.1016/j.aca.2004.02.056
[12] S. K. Sahoo, M. Baral and B. K. Kanungo, “Potentiomet- ric, Spectrophotometric, Theoretical Studies and Binding Properties of a Novel Tripodal Polycatechol-Amine Ligand with Lanthanide(III) Ions,” Polyhedron, Vol. 25, No. 3, 2006, pp. 722-736. doi:10.1016/j.poly.2005.07.039
[13] B. Pedras, H. M. Santos, L. Fernandesa, B. Covelo, A. Tamayo, E. Bertolo, J. L. Capelo, T. Aviles and C. Lodeiro, “Sensing Metal Ions with two New Azomethine- Thiophene Pincer Ligands (NSN): Fluorescence and MALDI-TOF-MS Applications,” Inorganic Chemistry Communications, Vol. 10, No. 8, 2007, pp. 925-929. doi:10.1016/j.inoche.2007.05.001
[14] J. Petit, V. Geertsen, C. Beaucaire and M. Stambouli, “Metal Complexes Stability Constant Determination by Hyphenation of Capillary Electrophoresis with Inductively Coupled Plasma Mass Spectrometry: The Case of 1:1 Metal-to-Ligand Stoichiometry,” Journal of Chro-matography A, Vol. 1216, No. 18, 2009, pp. 4113-4120. doi:10.1016/j.chroma.2009.02.094
[15] B. B. Tewari, “Paper Electrophoretic Determination of the Stability Constants of Binary and Ternary Complexes of Copper(II) and Cobalt(II) with Nitrilotriacetate and Cysteine,” Journal of Chromatography A, Vol. 1103, No. 1, 2006, pp. 139-144. doi:10.1016/j.chroma.2005.11.002
[16] M. Cirri, F. Maestrelli, S. Orlandini, S. Furlanetto, S. Pinzauti and P. Mura, “Determination of Stability Constant Values of Flurbiprofen-Cyclodextrin Complexes Using Different Techniques,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 37, No. 5, 2005, pp. 995- 1002. doi:10.1016/j.jpba.2004.09.044
[17] R. Tauler, A. Smilde and B. R. Kowalski, “Multivariate Curve Resolution Applied to Second Order Data,” Journal of Chemometrics, Vol. 9, No. 1, 1995, pp. 31-58. doi:10.1002/cem.1180090105
[18] S. Genc?, N. Dege, A. C?etin, A. Cans?z, M. S?ekerci and M. Dinc?er, “3-(2-Hydroxyphenyl)-4-phenyl-1H- 1,2,4-triazole-5(4H)-thione,” Acta Crystallographica, Vol. E60, 2004, pp. o1580-o1582.
[19] P. R. Bevington and D. K. Ro-binson, “Data Reduction and Error Analysis for the Physical Sciences,” McGraw- Hill, New York, 2002.
[20] W. H. Press, W. T. Vetterling, S. A. Teukolsky and B. P. Flannery, “Numerical Recipes in C,” 2nd Edition, Cambridge University Press, Cambridge, 1995.
[21] A. de Juan and R. Tauler, “Multivariate Curve Resolution (MCR) from 2000: Progress in Concept and Applications,” Critical Reviews in Analytical Chemistry, Vol. 36, 2006, pp. 163-176.
[22] J. M. Diaz-Cruz, R. Tauler, B. S. Grabaric, M. Esteban and E. Casassas, “Application of Multi-variate Curve Resolution to the Voltammetric Data. Part 1. Study of Zn(II) Complexation with Some Polyelectrolytes,” Journal of Electroanalytical Chemistry, Vol. 393, No. 1-2, 1995, pp. 7-16. doi:10.1016/0022-0728(95)04015-G
[23] J. Mendieta, M. S. D?′az-Cruz, R. Tauler and M. Esteban, “Application of Multivariate Curve Resolution to Volt-ammetric Data. Part 2: Study of Metal-Binding Properties of the Peptides,” Analytical Biochemistry, Vol. 240, No. 1, 1996, pp. 134-141. doi:10.1006/abio.1996.0340

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.