Gene Expression Profiling of Human Myeloid Leukemic MV4-11 Cells Treated with 5-Aza-2’-deoxycytidine


The pyrimidine analog, 5-aza-2’-deoxycytidine (5-aza-dC) is a DNA methyltransferase inhibitor that triggers DNA demethylation leading to the reactivation of epigenetically silenced tumor suppressor genes. To understand the shift in gene expression which mediates the beneficial 5-aza-dC effects in leukemia, we have treated human myeloid derived leukemic cells with 5-aza-dC. Target genes were identified first in MV4-11 cells using a genome-wide gene expression profiling assay to detect differences in treated and untreated cells. From this analysis six genes were identified (HOXA4, HOXD4, HOXA8, HOXD12, CD9 and RGS2) as being significantly different expressed after treatment. To validate microarray data, we performed quantitative PCR on these genes from multiple leukemic cells. The results suggest that these genes are epigenetically regulated indicating that dysregulation of HOXA4, HOXD4, HOXA8, HOXD12, CD9 and RGS2 expression may play an important role in establishing the malignant phenotype in AML.

Share and Cite:

K. Kim, D. Mossman, D. Small and R. J. Scott, "Gene Expression Profiling of Human Myeloid Leukemic MV4-11 Cells Treated with 5-Aza-2’-deoxycytidine," Journal of Cancer Therapy, Vol. 3 No. 3, 2012, pp. 177-182. doi: 10.4236/jct.2012.33025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Suzuki, E. Gabrielson, W. Chen, R. Anbazhagan, M. Van Engeland, M. P. Weijenberg, J. G. Herman and S. B. Baylin, “A Genomic Screen for Genes Upregulated by Demethylation and Histone Deacetylase Inhibition in Human Colorectal Cancer,” Nature Genetics, Vol. 31, No. 2, 2002, pp. 141-149. doi:10.1038/ng892
[2] J. P. Issa and H. M. Kantarjian, “Targeting Dna Methylation,” Clinical Cancer Research, Vol. 15, No. 12, 2009, pp. 3938-3946. doi:10.1158/1078-0432.CCR-08-2783
[3] H. I. Saba, “Decitabine in The treatment of Myelodysplastic Syndromes,” Therapeutics and Clinical Risk Management, Vol. 3, No. 5, 2007, pp. 807-817.
[4] Y. Oki, H. M. Kantarjian, V. Gharibyan, D. Jones, S. O’Brien, S. Verstovsek, J. Cortes, G. M. Morris, G. Garcia-Manero and J. P. Issa, “Phase II Study of Low-Dose Decitabine in Combination with Imatinib Mesylate in Patients with Accelerated or Myeloid Blastic Phase of Chronic Myelogenous Leukemia,” Cancer, Vol. 109, No. 5, 2007, pp. 899-906. doi:10.1002/cncr.22470
[5] S. Frohling, C. Scholl, D. G. Gilliland and R. L. Levine, “Genetics of Myeloid Malignancies: Pathogenetic and Clinical Implications,” Journal of Clinical Oncology, Vol. 23, No. 26, 2005, pp. 6285-6295. doi:10.1200/JCO.2005.05.010
[6] R. A. Padua, A. McGlynn and H. McGlynn, “Molecular, Cytogenetic and Genetic Abnormalities in MDS and Secondary AML,” Cancer Treatment and Research, Vol. 108, No. 1, 2001, pp. 111-157. doi:10.1007/978-1-4615-1463-3_8
[7] P. Fenaux, G. J. Mufti, E. Hellstrom-Lindberg, V. Santini, N. Gattermann, U. Germing, G. Sanz, A. F. List, S. Gore, J. F. Seymour, H. Dombret, J. Backstrom, L. Zimmerman, D. McKenzie, C. L. Beach and L. R. Silverman, “Azacitidine Prolongs Overall Survival Compared with Conventional Care Regimens in Elderly Patients with Low Bone Marrow Blast Count Acute Myeloid Leukemia,” Journal of Clinical Oncology, Vol. 28, No. 4, 2009, pp. 562-569. doi:10.1200/JCO.2009.23.8329
[8] Y. Oki and J. P. Issa, “Epigenetic Mechanisms in AML— A Target for Therapy,” Cancer Treatment and Research, Vol. 145, No. 1, 2010, pp. 19-40. doi:10.1007/978-0-387-69259-3_2
[9] K. T. Kim, K. Baird, J. Y. Ahn, P. Meltzer, M. Lilly, M. Levis and D. Small, “Pim-1 Is Up-Regulated by Constitutively Activated FLT3 and Plays a Role in FLT3-Mediated Cell Survival,” Blood, Vol. 105, No. 4, 2005, pp. 1759-1767. doi:10.1182/blood-2004-05-2006
[10] W. Huang Da, B. T. Sherman and R.A. Lempicki, “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols, Vol. 4, No. 1, 2009, pp. 44-57.
[11] J. G. Herman, J. R. Graff, S. Myohanen, B. D. Nelkin and S. B. Baylin, “Methylation-Specific PCR: A Novel PCR Assay for Methylation Status of CpG Islands,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 93, No. 18, 1996, pp. 9821-9826. doi:10.1073/pnas.93.18.9821
[12] J. D. Licchesi and J. G. Herman, “Methylation-Specific PCR,” Methods in Molecular Biology, Vol. 507, No. 1, 2009, pp. 305-323. doi:10.1007/978-1-59745-522-0_22
[13] L. C. Li and R. Dahiya, “MethPrimer: Designing Primers for Methylation PCRs,” Bioinformatics, Vol. 18, No. 11, 2002, pp. 1427-1431. doi:10.1093/bioinformatics/18.11.1427
[14] M. Giachelia, F. D’Alo, E. Fabiani, N. Saulnier, A. Di Ruscio, F. Guidi, S. Hohaus, M. T. Voso and G. Leone, “Gene Expression Profiling of Myelodysplastic CD34+ Hematopoietic Stem Cells Treated in Vitro with Decitabine,” Leukemia Research, Vol. 35, No. 4, 2011, pp. 465-471 doi:10.1016/j.leukres.2010.07.022
[15] E. E. Cameron, S. B. Baylin and J.G. Herman, “p15 (INK4B) CpG Island Methylation in Primary Acute Leukemia Is Heterogeneous and Suggests Density as a Critical Factor for Transcriptional Silencing,” Blood, Vol. 94, No. 7, 1999, pp. 2445-2451.
[16] J. C. Desmond, S. Raynaud, E. Tung, W. K. Hofmann, T. Haferlach and H. P. Koeffler, “Discovery of Epigenetically Silenced Genes in Acute Myeloid Leukemias,” Leukemia, Vol. 21, No. 5, 2007, pp. 1026-1034.
[17] C. Abramovich and R. K. Humphries, “Hox Regulation of Normal and Leukemic Hematopoietic Stem Cells,” Current Opinion in Hematology, Vol. 12, No. 3, 2005, pp. 210-216. doi:10.1097/01.moh.0000160737.52349.aa
[18] G. Strathdee, A. Sim, A. Parker, D. Oscier and R. Brown, “Promoter Hypermethylation Silences Expression of the HoxA4 Gene and Correlates with IgVh Mutational Status in CLL,” Leukemia, Vol. 20, No. 7, 2006, pp. 1326-1329. doi:10.1038/sj.leu.2404254
[19] E. A. Griffiths, S. D. Gore, C. Hooker, M. A. McDevitt, J. E. Karp, B. D. Smith, H. P. Mohammad, Y. Ye, J. G. Herman and H. E. Carraway, “Acute Myeloid Leukemia Is Characterized by Wnt Pathway Inhibitor Promoter Hypermethylation,” Leukemia and Lymphoma, Vol. 51, No. 9, 2010, pp. 1711-1719. doi:10.3109/10428194.2010.496505
[20] N. I. Khan and L. J. Bendall, “Role of WNT Signaling in Normal and Malignant Hematopoiesis,” Histology and Histopathology, Vol. 21, No. 7, 2006, pp. 761-774.
[21] A. Valencia, J. Roman-Gomez, J. Cervera, E. Such, E. Barragan, P. Bolufer, F. Moscardo, G. F. Sanz and M. A. Sanz, “Wnt Signaling Pathway Is Epigenetically Regulated by Methylation of Wnt Antagonists in Acute Myeloid Leukemia,” Leukemia, Vol. 23, No. 9, 2009, pp. 1658-1666. doi:10.1038/leu.2009.86
[22] J. Schwable, C. Choudhary, C. Thiede, L. Tickenbrock, B. Sargin, C. Steur, M. Rehage, A. Rudat, C. Brandts, W. E. Berdel, C. Muller-Tidow and H. Serve, “RGS2 Is an Important Target Gene of Flt3-ITD Mutations in AML and Functions in Myeloid Differentiation and Leukemic Transformation,” Blood, Vol. 105, No. 5, 2005, pp. 2107-2114. doi:10.1182/blood-2004-03-0940
[23] D. W. Wolff, Y. Xie, C. Deng, Z. Gatalica, M. Yang, B. Wang, J. Wang, M. F. Lin, P. W. Abel and Y. Tu, “Epigenetic Repression of Regulator of G-Protein Signaling 2 Promotes Androgen-Independent Prostate Cancer Cell Growth,” International Journal of Cancer, Vol. 130, No. 7, 2012, pp. 1521-1531 doi:10.1002/ijc.26138
[24] D. Clay, E. Rubinstein, Z. Mishal, A. Anjo, M. Prenant, C. Jasmin, C. Boucheix and M. C. Le Bousse-Kerdiles, “CD9 and Megakaryocyte Differentiation,” Blood, Vol. 97, No. 7, 2001, pp. 1982-1989. doi:10.1182/blood.V97.7.1982
[25] C. Boucheix and E. Rubinstein, “Tetraspanins,” Cellular and Molecular Life Sciences, Vol. 58, No. 9, 2001, pp. 1189-1205. doi:10.1007/PL00000933
[26] G. Heller, W. M. Schmidt, B. Ziegler, S. Holzer, L. Mullauer, M. Bilban, C. C. Zielinski, J. Drach and S. Zochbauer-Muller, “Genome-Wide Transcriptional Response to 5-Aza-2’-deoxycytidine and Trichostatin a in Multiple Myeloma Cells,” Cancer Research, 68, No. 1, 2008, pp. 44-54. doi:10.1158/0008-5472.CAN-07-2531

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.