Characterization of the Burning Behaviour of Plastics by a New Method


A method is described, that allows a quick and simple testing of the burning behaviour of plastics. It takes into account ignition time as well as afterflame time; properties that are characteristic for the burning behaviour of a particular plastic material. The procedure is easy to perform, it does neither require injection-moulded samples nor expensive equipment. The method provides a classification of the burning behaviour. It is especially suitable for a screening of plastic materials complementing established methods like UL-94, GWFI and LOI, and may find application in the development of flame retardants.

Share and Cite:

C. Vogel, A. Mueller, D. Lehmann and F. Taeger, "Characterization of the Burning Behaviour of Plastics by a New Method," Open Journal of Polymer Chemistry, Vol. 2 No. 2, 2012, pp. 86-90. doi: 10.4236/ojpchem.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] DIN EN ISO 4589, “Plastics—Determination of Burning Behaviour by Oxygen Index: Part 1,” Beuth Verlag, Berlin, 1999.
[2] Underwriter Laboratories, “UL-94: Tests for Flammability of Plastic Materials for Parts in Devices and Appliances,” 3rd Edition, Underwriter Laboratories Inc., North- brook, 1989.
[3] DIN EN 60695-2-12, “Fire Hazard Testing: Part 2-12: Glowing/Hot-Wire Based Test Methods—Glow-Wire Flammability Index (GWFI) Test Method for Materials,” Beuth Verlag, Berlin, 2001.
[4] F. Taeger, A. Mueller and D. Lehmann, “Verfahren zur Bestimmung des Brandverhaltens von Materialien,” DE Patent No. 10315228.8-52, 2003.
[5] H. Batzer, “Polymere werkstoffe,” Georg Thieme Verlag Stuttgart, New York, 1985, p. 517.
[6] C. J. Hilado, “Flammability Handbook for Plastics,” 5th Edition, Technomic Publishing Company, Basel, 1998, p. 48.
[7] J. Troitzsch, “International Plastics Flammability Handbook,” Carl Hanser Verlag, Munich, Vienna, New York, 1990, p. 22.
[8] H. G. Elias, “Macromolecules: Applications of Polymers, Volume 4,” Wiley-VCH, Weinheim, 2009, pp. 65-68. doi:10.1002/9783527627240
[9] A. R. Horrocks and D. Price, “Fire Retardant Materials,” Woodhead Publishing Ltd., Cambridge, 2001, p. 227.
[10] U. Braun, A. I. Balabanovich, B. Schartel, U. Knoll, J. Artner, M. Cisielski, M. D?ring, R. Perez, J. K. W. Sandler, V. Altst?dt, T. Hoffmann and D. Pospiech, “Influence of the Oxidation State of Phosphprorus on the Decomposition and Fire Behaviour of Flame-Retarded Epoxy Resin Composites,” Polymer, Vol. 47, No. 26, 2006, pp. 8495-8508. doi:10.1016/j.polymer.2006.10.022
[11] R. M. Perez, J. K. W. Sandler, V. Altst?dt, T. Hoffmann, D. Pospiech, M. Cisielski, M. D?ring, H. Braun, A. I. Balabanovich and B. Schartel, “Novel Phosphorus-Modi- fied Polysulfone as a Combined Flame Retardantand Toughness Modifier for Epoxy Resins,” Polymer, Vol. 48, No. 3, 2007, pp. 778-790. doi:10.1016/j.polymer.2006.12.011
[12] O. Fischer, D. Pospiech, A. Korwitz, K. Sahre, L. H?u?ler, P. Friedel, D. Fischer, C. Harnisch, Y. Bykov and M. D?ring, “Synthesis and Properties of Phosphorus Polyesters with Systamatically Altered Phosphorus Environment,” Polymer Degradation and Stability, Vol. 96, No. 12, 2011, pp. 2198-2208. doi:10.1016/j.polymdegradstab.2011.09.006

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.