Hypertension effects on p73 expression in the rat circumventricular organs and cerebrospinal fluid


It has been reported that spontaneously hypertensive rats (SHR) show ventricular dilation, changes in CSF proteins and variations in the circumventricular organs (CVO) such as: the subcommissural organ (SCO), the subfornical organ (SFO) and the area postrema (AP) which are located in the walls of the third and fourth ventricles. On the other hand, p73 proteins are present in cells of the central nervous system (CNS) such as circumventricular structures and the neuroepithelium which are altered in ventricular dilation. The purpose of the present work is to study the TAp73 isoform expression in the circumventricular organs (CVO) and their variations in ventricular dilatation and arterial hypertension. Brains and cerebrospinal fluid (CSF) from control Wistar-Kyoto rats (WKY) and SHR were used. The paraffin sections containing the CVO were immunohistochemically proc-essed with anti-TAp73 and by western blot, p73 bands in the CSF and circumventricular organ extract were also identified. The western blot study showed bands marked with p73 in the CSF and CVO, the p73 band expression was bigger in the SHR than in the WKY rats. We also found stronger markings in the SFO, SCO and AP of the hypertensive rats than in the WKY rats. It could be concluded that hypertension in the SHR produces altera-tions in the relationship between the p73 protein, circumventricular structures and CSF.

Share and Cite:

Carmona-Calero, E. , González-Marrero, I. , Castañeyra-Martin, M. , González-Toledo, J. , Castañeyra-Ruiz, L. , Paz-Carmona, H. , Castañeyra-Ruiz, A. , Ruiz-Mayor, L. and Castañeyra-Perdomo, A. (2012) Hypertension effects on p73 expression in the rat circumventricular organs and cerebrospinal fluid. World Journal of Neuroscience, 2, 68-73. doi: 10.4236/wjns.2012.22010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ritter, S. and Dinh, T.T. (1986) Progressive postnatal dilation of brain ventricles in spontaneously hypertensive rats. Brain Research, 370, 327-332. doi:10.1016/0006-8993(86)90488-9
[2] Carmona-Calero, E., Pérez-González, H., Martínez-Pe?a y Valenzuela, I., González-Marrero, I., Pérez-García, C.G., Marrero-Gordillo, N., Ormazabal-Ramos, C., Cas-ta?eyra-Perdomo, A. and Ferres-Torres, R. (2005) Effect of the arterial hypertension and captopril treatment on the angiotensin II content in the subfornical organ. A study in SHR rats. Histology and Histopathology, 20, 135-138.
[3] González-Marrero, I., Carmona-Calero, E.M., Fernández-Rodríguez, P., Pérez-González, H., Ormazabal-Ramos, C., Casta?eyra-Ruiz, L., Pérez-García, C.G., Martínez-Pe?a-Valenzuela, I., Casta?eyra-Ruiz, A., Casta?eyra-Perdomo, A. and Ferres-Torres, R. (2007) Expression of certain proteins in the subfornical organ and cerebrospinal fluid of spontaneously hypertensive rats. Histology and Histopathology, 22, 1371-1378.
[4] Rodríguez E.M., Oksche, A., Hein, S. and Yulis, C.R. (1992) Cell biology of the subcommissural organ. International review of cytology, 2, 39-121.
[5] Casta?eyra-Perdomo, A., Carmona-Calero, E., Meyer, G., Perez-Gonzalez, H., Pérez-Delgado, M.M., Marrero-Gordillo, N., Rodríguez, S. and Rodríguez, E.M. (1998) Changes in the secretory activity of the subcommissural organ of spontaneously hypertensive rats. Neuroscience Letters, 246,133-136. doi:10.1016/S0304-3940(98)00252-3
[6] Martínez-Pe?a y Valenzuela, I., Carmona-Calero, E.M., Pérez-González, H., Ormazabal-Ramos, C., Fernández-Rodríguez, P., González-Marrero, I., Casta?eyra-Perdomo, A. and Ferres-Torrer, R. (2006) Alterations of the cerebrospinal fluid proteins and subcommissural organ secretion in the arterial hypertension and ventricular dilatation. A study in SHR rats. Histology and Histopathology, 21, 179-185.
[7] Carmona-Calero, E.M., González-Marrero, I., González-Toledo, J.M., Casta?eyra-Ruiz, A., De Paz-Carmona, H., Casta?eyra-Ruiz, L., Fernández-Rodríguez, P., Ruiz-Mayor, M.L. and Casta?eyra-Perdomo, A. (2009) Reissner’s fibre proteins and p73 variations in the cerebrospinal fluid and subcommissural organ of hydrocephalic rats. Anatomia, Histologia, Embryologia, 38, 282-285. doi:10.1111/j.1439-0264.2009.00939.x
[8] Casta?eyra-Perdomo, A., Meyer, G. and Ferres-Torres,R. (1985) The early development of the human subcommissural organ. Journal of Anatomy, 143, 195-200.
[9] Casta?eyra-Perdomo, A., Carmona-Calero, E.M, Pérez-Gonzáles, H., Martínez-Pe?a y Valenzuela, I., Plaza-Moreno, P., Ormazabal-Ramos. C. and González-Marrero I., Trujillano-Dorado, A., Ferres-Torres, R. (2004) Ontogenic development of the human subcommissural organ. European Journal of Anatomy, 8, 107-120.
[10] Casta?eyra-Perdomo, A., Meyer, G.,. Carmona-Calero, E, Ba?uelos-Pineda, J., Méndez-Medina, R., Ormazabal-Ramos, C. and Ferres-Torres, R. (1994) Alterations of the subcommissural organ in the hydrocephalic human fetal brain. Developmental Brain Research, 79, 316-320. doi:10.1016/0165-3806(94)90138-4
[11] Irigoin, C., Rodriguez, E.M., Heinrichs, M., Frese, K., Herzog, S., Oksche, A. and Rott, R. (1990) Immunocytochemical study of the subcommissural organ of rats with induced postnatal hydrocephalus. Experimental Brain Research, 82, 384-392. doi:10.1007/BF00231257
[12] Takeuchi, I.K., Kimura, R., Matsuda, M. and Shoji, R. (1987) Absence of subcommissural organ in the cerebral aqueduct of congenital hydrocephalus spontaneously occurring in MT/HokIdr mice. Acta Neuropathologica, 73, 320-322. doi:10.1007/BF00688253
[13] Casta?eyra-Perdomo, A., Meyer, G. and Heylings, D.J. (1992) Early development of the human area postrema and subfornical organ. The Anatomical Record, 232, 612-619. doi:10.1002/ar.1092320416
[14] Akert, K. and Steiner, F.A. (1970) The ganglion psalterii. A brief review of anatomical and physiological aspects of the subfornical organ in mammals. Bibliotheca Psychiatrica, 10, 1-14.
[15] Lenkei, Z., Corvol, P. and Llorenz-Cortes, C. (1995) The angiotensin receptor subtype AT1A predominates in rat forebrain areas involved in blood pressure, body fluid homeostasis and neuroendocrine control. Molecular Brain Research, 30, 53-60. doi:10.1016/0169-328X(94)00272-G
[16] Ushigome, A., Nomura, M. and Tanaka, J. (2004). Modulation of noradrenaline release in the median preoptic area by GABAergic inputs from the organum vasculosum of the lamina terminalis in the rat. Neurochemistry International, 44, 139-144. doi:10.1016/S0197-0186(03)00134-7
[17] Brody, M.J. (1988) Central nervous system and mechanisms of hypertension. Clinical Physiology and Biochemistry, 6, 230-239.
[18] Saper, C.B., Reis, D. and Joh, T. (1983) Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neuroscience Letters, 42, 285-291. doi:10.1016/0304-3940(83)90276-8
[19] Meyer, G., Cabrera-Socorro, A., Perez-Garcia, C.G., Martinez-Millan, L., Walker, N. and Caput, D. (2004) Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. Neuroscience, 24, 9878-9887. doi:10.1523/JNEUROSCI.3060-04.2004
[20] Pozniak, C.D., Radinovic, S., Yang, A., McKeon, F., Kaplan, D.R. and Miller, F.D. (2000) An anti-apoptotic role for the p53 family member p73, during developmental neuron death. Science, 289, 304-306. doi:10.1126/science.289.5477.304
[21] Cabrera-Socorro, A., Pueyo Morlans, M., Suarez Sola, M., González Delgado, F.J., Casta?eyra Perdomo, A., Marín, M.C. and Meyer, G. (2006) Multiple isoforms of the tumor protein p73 are expresssed in the adult human telencephalon and choroid plexus and present in the cerebrospinal fluid. European Journal of Neuroscience, 23, 2109-2118. doi:10.1111/j.1460-9568.2006.04750.x
[22] Laemmli, U.K., (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. doi:10.1038/227680a0
[23] Wilson, C., Henry, S., Smith, M.A. and Bowser, R. (2004) The p53 homologue p73 accumulates in the nucleus and localizes to neurites and neurofibrillary tangles in Alzheimer disease brain. Neuropathology and Applied Neurobiology, 30, 19-29. doi:10.1046/j.0305-1846.2003.00496.x
[24] Cabrera-Socorro, A., Hernandez-Acosta, N.C., González-Gomez, M. and Meyer, G. (2007) Comparative aspects of p73 and Reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Research, 1132, 59-70. doi:10.1016/j.brainres.2006.11.015
[25] Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C.C., Khan, F., Itie-Youten, A., Wakeham, A., Tsao, M.S., Iovanna, J.L., Squire, J., Jurisica, I., Kaplan, D., Melino, G., Jurisicova, A. and Mak, T.W. (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & Development, 22, 2677-2691. doi:10.1101/gad.1695308
[26] Fujitani, M., Cancino, G.I., Dugani, C.B., Weaver, I.C., Gauthier-Fisher, A., Paquin, A., Mak, T.W., Wojtowicz, M.J., Miller, F.D. and Kaplan, D.R. (2010) TAp73 acts via the bHLH Hey2 to promote long-term maintenance of neural precursors. Current Biology, 20, 2058-2065. doi:10.1016/j.cub.2010.10.029
[27] Jennings, J.R. and Zanstra, Y. (2009) Is the brain the essential in hypertension? NeuroImage, 47, 914-921. doi:10.1016/j.neuroimage.2009.04.072
[28] Raz, N. and Rodrigue, K.M. (2006) Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience & Biobehavioral Reviews, 30, 730-748. doi:10.1016/j.neubiorev.2006.07.001
[29] Waldstein, S.R., Giggey, P.P., Thayer, J.F. and Zonderman, A.B. (2005) Nonlinear relations of blood pressure to cognitive function: The Baltimore longitudinal study of aging. Hypertension, 45, 374-379. doi:10.1161/01.HYP.0000156744.44218.74

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.