Share This Article:

Photoelectrochemical and Spectroscopic Studies of Colloidal Nano-Particles of Mixed TiO2/V2O5 Metal-Oxide Semiconductors

Abstract Full-Text HTML Download Download as PDF (Size:737KB) PP. 265-271
DOI: 10.4236/msa.2012.35039    3,656 Downloads   6,012 Views   Citations


Due to its importance in hydrogen production during the photolysis process of aqueous suspensions process, mixed TiO2/V2O5 metal-oxide semiconductors were prepared and subjected to crystal structure investigation using X-ray technique. The photoelectrochemical behavior of these TiO2/V2O5 was investigated by photolysis of aqueous suspensions of these oxides containing [Fe(CN)6]4-. X-ray diffraction analysis indicated that the TiO2 crystallites grow in the (1 0 1) direction, while The V2O5 crystallites seem to be growing in the (4 2 0) direction, with increasing concentration of V2O5. Photolysis studies show that photochemical activities that maintained the [Fe(CN)6]4/[Fe(CN)6]3- redox reversibility increased by increasing V2O5 up to 50% and then decreased at greater percentages. Aqueous nano systems used in these studies retained their stability as indicated by the reproducibility of their photo-catalytic activities.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. K. Kasem, A. Finley, J. Folberth, M. Syed and E. Kirkpatrick, "Photoelectrochemical and Spectroscopic Studies of Colloidal Nano-Particles of Mixed TiO2/V2O5 Metal-Oxide Semiconductors," Materials Sciences and Applications, Vol. 3 No. 5, 2012, pp. 265-271. doi: 10.4236/msa.2012.35039.


[1] D. Martel, C. Nguyen, Hoan and J. Weiss, “Process for the Production of Hydrogen from an Aqueous Medium,” France Patent No. 2940263, 2010.
[2] V. M. Aroutiounian, V. M. Arakelyan and G. E. Shahnazaryan, “Metal Oxide Photoelectrodes for Hydrogen Generation Using Solar Radiation-Driven Water Splitting,” Solar Energy, Vol. 78, No. 5, 2005, pp. 581-592. doi:10.1016/j.solener.2004.02.002
[3] M. Kaneko, H. Ueno, R. Saito, S. Yamaguchi, Y. Fujii and J. Nemoto, “UV Light-Activated Decomposition/ Cleaning of Concentrated Biomass Wastes Involving also Solid Suspensions with Remarkably High Quantum Efficiency,” Applied Catalysis B: Environmental, Vol. 91, No. 1-2, 2009, pp. 254-261. doi:10.1016/j.apcatb.2009.05.033
[4] K. K. Kasem and M. Dahn, “Photodissociation of Water Using Colloidal Nanoparticles of Doped Titanium (IV) Oxide Semiconductors for Hydrogen Production,” Current Science, Vol. 99, No. 8, 2010, pp. 1068-1073.
[5] C. E. Jones and L. J. Carpenter, “Solar Photolysis of CH2I2, CH2ICl, and CH2IBr in Water, Saltwater, and Seawater,” Environmental Science and Technology, Vol. 39, No. 16, 2005, pp. 6130-6137. doi:10.1021/es050563g
[6] V. M. Daskalaki, P. Panagiotopoulou and D. I. Kondarides, “Production of Peroxide Species in Pt/TiO2 Suspensions under Conditions of Photocatalytic Water Splitting and Glycerol Photoreforming,” Chemical Engineering Journal, Vol. 170, No. 2-3, 2011, pp. 433-439. doi:10.1016/j.cej.2010.11.093
[7] K. K. Kasem, M. Dahn and N. Zia, “Photolysis of Aqueous Colloidal Zinc Oxide Nanoparticles for Hydrogen Production,” CACS Communications, Vol. 4, No. 1, 2010, pp. 13-17.
[8] A. Patsoura, D. I. Kondarides and X. E. Verykios, “EnHancement of Photoinduced Hydrogen Production from Irradiated Pt/TiO2 Suspensions with Simultaneous Degradation of Azo-Dyes,” Applied Catalysis B: Environmental, Vol. 64, No. 3-4, 2006, pp. 171-179. doi:10.1016/j.apcatb.2005.11.015
[9] K. Pechstedt, T. Whittle, J. Baumberg and T. Melvin, “Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules,” Journal of Physical Chemistry C, Vol. 114, No. 28, 2010, pp. 12069-12077. doi:10.1021/jp100415k
[10] M. Graetzel, “Nanocrystalline Electronic Junctions,” In: P. V. Kamat and D. Meisel, Eds., Semiconductor Nanoclusters—Physical, Chemical and Catalytic Aspects, Elsevier, Amsterdam, 1997, p. 353.
[11] K. R. Goidas, M. Bohorques and P. V. Kamat, “Photophysical and Photochemical Aspects of Coupled Semiconductors: Charge-Transfer Processes in Colloidal Cadmium Sulfide-Titania and Cadmium Sulfide-Silver(I) Iodide Systems,” Journal of Physical Chemistry B, Vol. 94, , No. 16, 1990, pp. 6435-6440. doi:10.1021/j100379a051
[12] R. Vogel, K. Pohl and H. Weller, “Sensitization of Highly Porous, Polycrystalline TiO2 Electrodes by Quantum Sized CdS,” Chemical Physics Letters, Vol. 174, No. 3-4, 1990, pp. 241-246. doi:10.1016/0009-2614(90)85339-E
[13] S. Kohtani, A. Kudo and T. Sakata, “Spectral Sanitization of TiO2 Semiconductor Electrode by CdS Microcrystals, and Its Photoelectrochemical Properties,” Chemical Physics Letters, Vol. 206, No. 1-4, 1993, pp. 166-170. doi:10.1016/0009-2614(93)85535-V
[14] R. Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors,” Journal of Physical Chemistry, Vol. 98, No. 12, 1994, pp. 3183-3188. doi:10.1021/j100063a022
[15] R. Plass, S. Pelet, J. Krueger, M. Gratzel and U. Bach, “Quantum Dot Sensitization of Organic?Inorganic Hybrid Solar Cells,” Journal of Physical Chemistry B, Vol. 106, No. 31, 2002, pp. 7578-7580. doi:10.1021/jp020453l
[16] L. M. Peter, K. G. U. Wijayantha, D. J. Riley and J. P. Waggett, “Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used to Photosensitize Nanocrystalline TiO2,” Journal of Physical Chemistry B, Vol. 107, No. 33, 2003, pp. 8378-8381. doi:10.1021/jp030334l
[17] S. Gordon, E. J. Hars, M. S. Matheson, J. Rahani and J. K. Thomas, “Reaction Constant of Hydrated Electrons,” Journal of the American Chemical Society, Vol. 85, No. 10, 1963, pp. 1375-1377. doi:10.1021/ja00893a002
[18] A. Ookubo, E. Kanezaki and K. Ooi and Langmuir, “ESR, XRD, and DRS Studies of Paramagnetic Titanium(3+) Ions in a Colloidal Solid of Titanium Oxide Prepared by the Hydrolysis of Titanium Trichloride,” Langmuir, Vol. 6, No. 1, 1990, p. 206.
[19] A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physical Review Letters, Vol. 56, No. 10, 1939, pp. 978-982. doi:10.1103/PhysRev.56.978
[20] R. A. Van leeuwen, C.-J. Hung, D. R. Kammler and J. A. Switzer, “Optical and Electronic Transport Properties of Electrodeposited Thallium (III) Oxide Films,” Journal of Physical Chemistry, Vol. 99, No. 41, 1995, pp. 15247-15252. doi:10.1021/j100041a047
[21] S. Kumari, C. Tripathi, A. P. Singh1, D. Chauhan, R. Shrivastav, S. Dass and V. R. Satsangi, “Characterization of Zn-Doped Hematite Thin Films for Photoelectrochemical Splitting of Water,” Current Science, Vol. 91 No. 8, 2006, pp. 1062-1064.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.