First Evidence of Surface SH-Wave Propagation in Cubic Piezomagnetics

DOI: 10.4236/jemaa.2010.25037   PDF   HTML     4,487 Downloads   9,178 Views   Citations


This theoretical work provides with results of characteristics calculation of the ultrasonic surface Zakharenko waves (USZWs) existing in piezomagnetic cubic monocrystals of class m3m that can be readily used for non-destructive testing. The piezomagnetic waves propagate in direction [101] corresponding to relatively easy magnetization for the following piezomagnetics: Galfenol, Terfenol-D, and CoFe2O4 with cubic structures. The phase velocities of the USZW-waves and the coefficient of magnetomechanical coupling (CMMC) K2 were calculated for the crystals. It was found that the coefficient K2 for piezomagnetics with Km2 > 1/3 and Km2 >> 1/3 is about 8% to 9%, where K2 = 2 (VUSZW,o – VUSZW,c)/VUSZW,o and Km2 = h2/(Cμ). Knowledge of piezomagnetic properties of cubic crystals makes possible the use of them in new products utilizing the phenomenon called the magnetoelectric effect. Also, this study is useful for possible application of cubic piezomagnetics in composite structures consisting of piezoelectric and (or) piezomagnetic materials and in the microwave technology. This broadens choice of possible piezomagnetic materials for utilization in various technical devices.

Share and Cite:

A. Zakharenko, "First Evidence of Surface SH-Wave Propagation in Cubic Piezomagnetics," Journal of Electromagnetic Analysis and Applications, Vol. 2 No. 5, 2010, pp. 287-296. doi: 10.4236/jemaa.2010.25037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. V. Suchtelen, “Product Properties: a New Application of Composite Materials,” Philips Research Reports, Vol. 27, No. 1, 1972, pp. 28-37.
[2] J. V. D. Boomgaard, D. R. Terrell, R. A .J. Born and H. F. J. I. Giller, “An in Situ Grown Eutectic Magnetoelectric Composite-Material: 1. Composition and Unidirectional Solidification,” Journal of Materials Science, Vol. 9, No. 10, 1974, pp. 1705-1709.
[3] A. M. J. G. V. Run, D. R. Terrell and J. H. Scholing, “An in Situ Grown Eutectic Magnetoelectric Composite-Ma- terial: 2. Physical Properties,” Journal of Materials Science, Vol. 9, No. 10, 1974, pp. 1710-1714.
[4] J. V. D. Boomgaard, A. M. J. G. V. Run and J. V. Suchtelen, “Piezoelectric-Piezomagnetic Composites with Mag- netoelectric Effect,” Ferroelectrics, Vol. 14, 1976, pp. 727-728.
[5] V. E. Wood, A. E. Austin, “Magnetoelectric Interaction Phenomena in Crystals,” In A. J. Freeman, H. Schmid, Eds., Gordon and Breach Science Publishers, Newark, New York, 1975, pp. 181-194.
[6] Y. N. Venevtsev, V. V. Gagulin and I. D. Zhitomirsky, “Material Science Aspects of Seignette-Magnetism Problem,” Ferroelectrics, Vol. 73, 1987, pp. 221-248.
[7] M. Fiebig, “Revival of the Magnetoelectric Effect,” Jour- nal of Physics D: Applied Physics, Vol. 38, No. 8, 2005, pp. 123-152.
[8] P. Curie, “Sur la Symétrie des Phénomènes Physiques: Symétrie d'un Champ électrique et d'un Champ Mag- nétique,” Journal de Physique, 3e Série, Vol. 3, 1894, pp. 393-415.
[9] L. Rayleigh, “On Waves Propagated along the Plane Surface of Elastic Solids,” Proceedings of the London Mathematical Society, Oxford, Vol. 17, 1885, pp. 4-11.
[10] J. L. Bleustein, “A New Surface Wave in Piezoelectric Materials,” Applied Physics Letters, Vol. 13, No. 12, 1986, pp. 412-413.
[11] Y. V. Gulyaev, “Electroacoustic Surface Waves in Solids,” Soviet Physics Journal of Experimental and Theoretical Physics Letters, Vol. 9, 1969, pp. 37-38.
[12] C. Maerfeld and P. Tournois, “Pure Shear Elastic Surface Wave Guide by the Interface of two Semi-Infinite Media,” Applied Physics Letters, Vol. 19, No. 4, 1971, pp. 117-118.
[13] E. Danicki, “New Interfacial Shear Wave in Piezoelectrics,” Applied Physics Letters, Vol. 64, No. 8, 1994, pp. 969-970.
[14] A. E. H. Love, “Some problems of Geodynamics,” Cambridge University Press, London, 1911.
[15] C. W. Nan, “Magnetoelectric Effect in Composites of Piezoelectric and Piezomagnetic Phases,” Physical Re- view B, Vol. 50, No. 9, 1994, pp. 6082-6088.
[16] S. Srinivas, J. Y. Li, Y. C. Zhou and A. K. Soh, “The Effective Magnetoelectroelastic Moduli of Matrix-Based Multiferroic Composites,” Journal of Applied Physics, Vol. 99, No. 4, 2006, pp. (043905)1-7.
[17] V. I. Al’shits and A. N. Darinskii and J. Lothe, “On the Existence of Surface Waves in Half-Infinite Anisotropic Elastic Media with Piezoelectric and Piezomagnetic Properties,” Wave Motion, Vol. 16, No. 3, 1992, pp. 265-283.
[18] A.-K. Soh and J.-X. Liu, “Interfacial Shear Horizontal Waves in a Piezoelectric-Piezomagnetic Bi-Material,” Philosophical Magazine Letters, Vol. 86, No. 1, 2006, pp. 31-35.
[19] K.-Q. Hu and G.-Q. Li, “Constant Moving Crack in a Magnetoelectroelastic Material under Anti-Plane Shear Loading,” International Journal of Solids and Structures, Vol. 42, No. 9-10, 2005, pp. 2823-2835.
[20] X.-F. Li, “Dynamic Analysis of a Cracked Magnetoelectr- Oelastic Medium under Anti-Plane Mechanical and In- Plane Electric and Magnetic Impacts,” International Journal of Solids and Structures, Vol. 42, No. 11-12, 2005, pp. 3185-3205.
[21] J. Chen, E. Pan and H. Chen, “Wave Propagation in Magneto-Electro-Elastic Multilayered Plates,” International Journal of Solids and Structures, Vol. 44, No. 3-4, 2007, pp. 1073-1085.
[22] K. Mori and M. Wuttig, “Magnetoelectric Coupling in Terfenol-D/polyvinylidenedifluoride Composites,” App- lied Physics Letters, Vol. 81, No. 1, 2002, pp. 100-101.
[23] M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. M. Laletsin, N. Paddubnaya and G. Srinivasan, “Resonance Magnetoelectric Effects in Layered Magnetostritive-Piezoele- ctric Composites,” Physical Review B, Vol. 68, No. 13, 2003, pp. (132408)1-4.
[24] K. Srinivas, G. Prasad, T. Bhimasankaram and S. V. Suryanarayana, “Electromechanical Coefficients of Mag- netoelectric PZT-CoFe2O4 Composite,” Modern Physics Letters B, Vol. 14, No. 17-18, 2000, pp. 663-674.
[25] P. Yang, K. Zhao, Y. Yin, J.G. Wan and J.S. Zhu, “Magnetoelectric Effect in Magnetostrictive/Piezoelectric La- minate Composite Terfenol-D/LiNbO3 [(zxtw)-129°/ 30°],” Applied Physics Letters, Vol. 88, No. 17, 2006, pp. (172903)1-3.
[26] Y. V. Gulyaev and F. S. Hickernell, “Acoustoelectronics: History, Present State and New Ideas for a New Era,” Acoustical Physics, Vol. 51, No. 1, 2005, pp. 81-88.
[27] A. A. Zakharenko, “New Solutions of Shear Waves in Piezoelectric Cubic Crystals,” Journal of Zhejiang University SCIENCE, Vol. 8, No. 4, 2007, pp. 669-674.
[28] W. Kleber, “An Introduction to Crystallography,” VEB Verlag Technik, Berlin, 1970.
[29] M. J. Dapino, “Nonlinear and Hysteretic Magnetomecha- Nical Model for Magnetostrictive Transducers,” PhD Thesis, Iowa State University, 1999.
[30] A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso and D. L. Schlagel, “Magnetostrictive Properties of Body- centered Cubic Fe-Ga and Fe-Ga-Al Alloys,” IEEE Tran- sactions on Magnetics, Vol. 36, No. 5, 2000, pp. 3238- 3240.
[31] R. A. Kellog, “Development and Modeling of Iron-Gallium Alloys,” PhD Thesis, Iowa State University, 2003.
[32] M. J. Dapino, “On Magnetostrictive Materials and their Use in Adaptive Structures,” International Journal of Structural Engineering and Mechanics, Vol. 17, No. 3-4, 2004, pp. 303-329.
[33] M. J. Dapino, F. T. Calkins and A. B. Flatau, “Magnetostrictive Devices,” Wiley Encyclopedia of Electrical and Electronics Engineering, In. J. G. Webster, Ed., John Wiley and Sons Inc., New York, Vol. 12, 1999, pp. 278- 305.
[34] J. B. Restorff, “Magnetostrictive Materials and Devices,” Encyclopedia of Applied Physics, Vol. 9, 1994, pp. 229- 244.
[35] R. Chung, R. Weber and D. Jiles, “A Terfenol-D Based magnetostrictive Diode Laser Magnetometer,” IEEE Transactions on Magnetics, Vol. 27, No. 6, 1991, pp. 5358-5243.
[36] M. J. Dapino, R. C. Smith and A. B. Flatau, “Structural- Magnetic Strain Model for Magnetostrictive Transducers,” IEEE Transactions on Magnetics, Vol. 36, No. 3, 2000, pp. 545-556.
[37] P. R. Downey and A. B. Flatau, “Magnetoelastic Bending of Galfenol for Sensor Applications,” Journal of Applied Physics, Vol. 97, No. 10, 2005, pp. (10R505)1-3.
[38] J. Atulasimha, A. B. Flatau and R. A. Kellogg, “Sensing Behavior of Varied Stoichiometry Single Crystal Fe-Ga,” Journal of Intelligent Material Systems and Structures, Vol. 17, No. 2, 2006, pp. 97-105.
[39] G. W. Farnell and E. L. Adler, “Elastic Wave Propagation in Thin Layers,” Physical Acoustics: Principles and Methods, In. W. P. Mason and R. N. Thurston Eds., Academic Press, New York, Vol. 9, 1972, pp. 35-127.
[40] C. Lardat, C. Maerfeld and P. Tournois, “Theory and Performance of Acoustical Dispersive Surface Wave Delay Lines,” Proceedings of the IEEE, Vol. 59, No. 3, 1971, pp. 355-368.
[41] V. E. Lyamov, “Polarization Effects and Interaction Anisotropy of Acoustic Waves in Crystals,” MSU Publishing, Moscow, 1983.
[42] A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu and R. A. Taylor, “Extraordinary Magnetoelasticity and Lattice Softening in Bcc Fe-Ga Alloys,” Journal of Applied Physics, Vol. 93, No. 10, 2003, pp. 8621-8623.
[43] A. E. Clark, “Structural Fe-based Alloys with High Magnetostriction,” Galfenol Workshop, University of Maryland, USA, 29 January 2004.
[44] A. A. Zakharenko, “On Cubic Crystal Anisotropy for Waves with Rayleigh-Wave Polarization,” Non-destructive Testing and Evaluation, Vol. 21, No. 2, 2006, pp. 61-77.
[45] T. J. C. Liu and C. H. Chue, “On the Singularities in a Bimaterial Magneto-Electro-Elastic Composite Wedge under Anti-Plane Deformation,” Composite Structures, Vol. 72, No. 2, 2006, pp. 254-265.
[46] F. Ramirez, P. R. Heyliger and E. Pan, “Free Vibration Response of Two-Dimensional Magneto-Electro-Elastic Laminated Plates,” Journal of Sound and Vibration, Vol. 292, No. 3-5, 2006, pp. 626-644.
[47] A. E. Clark, “Magnetostrictive Rare Earth-Fe2 Compounds,” Ferromagnetic Materials, In. E. P. Wohlfarth, Ed., North-Holland Publishing Company, Amsterdam, Vol. 1, Chapter 7, 1980, pp. 531-589.
[48] V. I. Al’shits and V. N. Lyubimov, “On Existence of Piezoelectric and Piezomagnetic Properties of Anisotropic Media,” Soviet Kristallographia, Moscow, Vol. 35, No. 2, 1990, pp. 483-484.
[49] D. Royer and E. Dieulesaint, “Elastic Waves in Solids I,” Springer-Verlag, New York, 2000.
[50] Y. V. Gulyaev, I. E. Dikshtein and V. G. Shavrov, “Mag- netoacoustic Surface Waves in Magnetic Crystals at Reorientation Phase Transitions,” Uspekhi Phizicheskikh Nauk, Moscow, Vol. 167, No. 7, 1997, pp. 735-750.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.