Domain Wall Width in Different Ferroelectrics via Perturbation Route


The domains are of fundamental interest for engineering a ferroelectric material. The domain wall and its width control the ferroelectric behavior to a great extent. The stability of polarization in the context of Landau-Ginzburg free energy functional has been worked out in a previous work by a perturbation approach, where two limits of domain wall width were estimated within the stability zone and they were also found to correspond well with the data on lithium niobate and lithium tantalate. In the present work, it is shown that this model is valid for a wide range of ferroelectric materials and also for a given ferroelectric, such as lithium niobate with different levels of impurities, which are known to affect the domain wall width.

Share and Cite:

A. Bandyopadhyay, A. Sengupta, K. Choudhary, A. Bandyopadhyay and P. Ray, "Domain Wall Width in Different Ferroelectrics via Perturbation Route," World Journal of Condensed Matter Physics, Vol. 2 No. 2, 2012, pp. 91-95. doi: 10.4236/wjcmp.2012.22016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Fu and R. E. Cohen, “Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-Crystal Piezoelectrics,” Nature, Vol. 403, No. 6767, 2000, pp. 281-283. doi:10.1038/35002022
[2] S. Kim, V. Gopalan and A. Gruverman, “Coercive Fields in Ferroelectrics: A Case Study in Lithium Niobate and Lithium Tantalite,” Applied Physics Letters, Vol. 80, No. 15, 2002, pp. 2740-2742. doi:10.1063/1.1470247
[3] D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena and P. J. Swart, “Phenomenological Theory of a Single Domain Wall in Uniaxial Trigonal Ferroelectrics: Lithium Niobate and Lithium Tantalate,” Physical Review B, Vol. 71, No. 18, 2005, pp. 184110-184122. doi:10.1103/PhysRevB.71.184110
[4] A. K. Bandyopadhyay and P. C. Ray, “Perturbation Analysis and Memory in Ferroelectric Materials,” Journal of Applied Physics, Vol. 95, No. 1, 2004, pp. 226-230. doi:10.1063/1.1630698
[5] M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials Clarendon,” Clarendon Press, Oxford, 1977.
[6] V. Gopalan and T. E. Mitchell, “Wall Velocities, Switching Times, and Stabilization Mechanism of 180? Domains in Congruent LiTaO3 Crystals,” Journal of Applied Physics, Vol. 83, No. 2, 1998, pp. 941-954. doi:10.1063/1.366782
[7] A. K. Bandyopadhyay, P. C. Ray and V. Gopalan, “Dynamical Systems Analysis for Polarization in Ferroelectrics,” Journal of Applied Physics, Vol. 100, No. 11, 2006, pp. 114106-114109. doi:10.1063/1.2388124
[8] J. Padilla, W. Zhong and D. Vanderbilt, “Heterovalent and A-Atom Effects in A(B'B″) O3 Perovskite Alloys,” Physical Review B, Vol. 59, No, 3, 1996, pp. 1834-1839. doi:0.1103/PhysRevB.59.1834
[9] B. Meyer and D. Vanderbilt, “Ab initio Study of Ferroelectric Domain Walls in PbTi O3,” Physical Review B, Vol. 65, No. 10, 2002, pp. 104111-104121. doi:10.1103/PhysRevB.65.104111
[10] N. Floquet, C. M. Valot, M. T. Mesnier, J. C. Niepce, L. Normand, M. Thorel and R. Kilaas, “Ferroelectric Domain Walls in BaTiO3: Fingerprints in XRPD Diagrams and Quantitative HRTEM Image Analysis,” Journal of Physics III, Vol. 7, No. 6, 1997, pp. 1105-1128. doi:10.1051/jp3:1997180
[11] Y. Girshberg and Y. Yacoby, “Ferroelectric Phase Transitions and Off-Centre Displacements in Systems with Strong Electron-Phonon Interaction,” Journal of Physics: Condensed Matter, Vol. 11, No. 48, 1999, pp. 9807-9822. doi:10.1088/0953-8984/11/48/337.
[12] A. L. Roytburd, “Elastic Domains and Polydomain Phases in Solids,” Phase Transitions B, Vol. 45, 1993, pp. 1-34. doi:10.1080/01411599308203516
[13] W. Zhang and K. Bhattacharya, “A Computational Model of Ferroelectric Domains. Part II: Grain Boundaries and Defect Pinning,” Acta Materialia, Vol. 53, No. 1, 2005, pp. 199-209. doi:10.1016/j.actamat.2004.09.015
[14] W. Zhang and K. Bhattacharya, “A Computational Model of Ferroelectric Domains. Part I: Model Formulation and Domain Switching,” Acta Materialia, Vol. 53, No. 1, 2005, pp. 185-198. doi:10.1016/j.actamat.2004.09.016
[15] Y. Su and C. M. Landis, “Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning,” Journal of the Mechanics and Physics of Solids, Vol. 55, No. 2, 2007, pp. 280-305. doi:10.1016/j.jmps.2006.07.006
[16] N. Floquet and C. Valot, “Ferroelectric Domain Walls in BaTiO3: Structural Wall Model Interpreting Fingerprints in XRPD Diagrams,” Ferroelectrics, Vol. 234, No. 1, 1999, pp. 107-122. doi:10.1080/00150199908225285
[17] W. Yan, et al., “The Relationship between the Switching Field and the Intrinsic Defects in Near-Stoichiometric Lithium Niobate Crystals,” Journal of Physics D: Applied Physics, Vol. 39, No. 1, 2006, pp. 21-24. doi:10.1088/0022-3727/39/1/004
[18] L. Tian, V. Gopalan and L. Galambos, “Domain Reversal in Stoichiometric LiTaO3 Prepared by Vapor Transport Equilibration,” Applied Physics Letters, Vol. 85, No. 19, 2004, pp. 4445-4447. doi:10.1063/1.1814436
[19] V. Gopalan, V. Dierolf and D. A. Scrymgeour, “Defect-Domain Wall Interactions in Trigonal Ferroelectrics,” Annual Reviews Materials Research, Vol. 37, 2007, pp. 449-489. doi:10.1146/annurev.matsci.37.052506.084247
[20] A. K. Bandyopadhyay, P. C. Ray and V. Gopalan, “Solitons and Critical Breakup Fields in Lithium Niobate Type Uniaxial Ferroelectrics,” European Physical Journal B, Vol. 65, No. 4, 2008, pp. 525-531. doi:10.1140/epjb/e2008-00356-9
[21] A. K. Bandyopadhyay, P. C. Ray, L. Vu-Quoc and A. R. McGurn, “Multiple-Time-Scale Analysis of Nonlinear Modes in Ferroelectric LiNbO3,” Physical Review B, Vol. 81, No. 6, 2010, pp. 064104-064114. doi:10.1103/PhysRevB.81.064104
[22] A. K. Bandyopadhyay, P. C. Ray and V. Gopalan, “An Approach to the Klein-Gordon Equation for a Dynamic Study in Ferroelectric Materials,” Journal of Physics: Condensed Matter, Vol. 18, No. 16, 2006, pp. 4093-4100. doi:10.1088/0953-8984/18/16/016
[23] P. Giri, S. Ghosh, K. Choudhary, Md. Alam, A. K. Bandyopadhyay and P. C. Ray, “Importance of Damping on Nanoswitching in LiNb O3-Type Ferroelectrics,” Physica Scripta, Vol. 83, No. 1, 2011, p. 015702. doi:10.1088/0031-8949/83/01/015702.
[24] A. Biswas, K. Choudhary, A. K. Bandyopadhyay, A. K. Bhattacharjee and D. Mandal, “Quantum Pining-Transition Due to Charge Defect in Ferroelectrics,” Journal of Applied Physics, Vol. 110, No. 2, 2011, pp. 024104-024111. doi:10.1063/1.3607298

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.