Share This Article:

A Comparative Study of Stress Recovery Method and Error Estimation of Plate Bending Problem Using DKMQ Element

Abstract Full-Text HTML XML Download Download as PDF (Size:563KB) PP. 47-55
DOI: 10.4236/mme.2012.22007    4,867 Downloads   8,711 Views   Citations

ABSTRACT

Recovery by Equilibrium in Patches (REP) is a recovery method introduced by B. Boroomand. This method is using patch as recovery media as is used by Superconvergent Patch Recovery (SPR) which is well known as a good recovery method. In this research, a numerical study of REP implementation is held to estimate error in finite element analysis using DKMQ element. The numerical study is performed with both uniform and adaptive h-type mesh refinement. The result is compared with three other recovery method, i.e. SPR method, averaging method, and projection method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Katili, A. Hamdouni, O. Millet, J. Rastandi and I. Maknun, "A Comparative Study of Stress Recovery Method and Error Estimation of Plate Bending Problem Using DKMQ Element," Modern Mechanical Engineering, Vol. 2 No. 2, 2012, pp. 47-55. doi: 10.4236/mme.2012.22007.

References

[1] O. C. Zienkiewicz and J. Z. Zhu, “The Superconvergence Patch Recovery and a Posteriori Error Estimation in the Finite Element Method, Part 1: The Recovery Technique,” International Journal for Numerical Methods in En- gineering, Vol. 33, No. 7, 1992, pp. 1331-1364. doi:10.1002/nme.1620330702
[2] O. C. Zienkiewicz and J. Z. Zhu, “The Superconvergence Patch Recovery and a Posteriori Error Estimation in the Finite Element Method, Part 2: Error Estimates and Adaptivity,” International Journal for Numerical Methods in Engineering, Vol. 33, No. 7, 1992, pp. 1364-1382. doi:10.1002/nme.1620330703
[3] Z. Z. Zhang, “Ultracon-vergence of the Patch Recovery Technique,” Mathematics of Computations, Vol. 65, No. 216, 1996, pp. 1431-1437. doi:10.1090/S0025-5718-96-00782-X
[4] B. Boroomand and O. C. Zienkiewicz, “Recovery by Equilibrium in Patches (REP),” International Journal for Numerical Methods in Engineering, Vol. 40, No. 1, 1997, pp. 137-164. doi:10.1002/(SICI)1097-0207(19970115)40:1<137::AID-NME57>3.0.CO;2-5
[5] B. Boroomand and O. C. Zienkiewicz, “An Improved REP Recovery and the Effectivity Robustness Test,” Inter- national Journal for Numerical Methods in Engineering, Vol. 40, No. 17, 1997, pp. 3247-3277. doi:10.1002/(SICI)1097-0207(19970915)40:17<3247::AID-NME211>3.0.CO;2-Z
[6] B. Boroomand, M. Ghaffarian and O. C. Zienkiewicz, “On Application of Two Superconvergent Re-covery Procedures to Plate Problems,” International Journal for Numerical Methods in Engineering, Vol. 61, No. 10, 2004, pp. 1644-1673. doi:10.1002/nme.1128
[7] Z. Zhang and A. Naga, “Polynomial Preserving Gradient Recovery And A Posteriori Estimate for Bilinear Element On Irregular Quadrilaterals,” International Journal of Numerical Analysis and Modeling, Vol. 1, No. 1, 2004, pp. 1-24.
[8] O. C. Zienkiewicz and J. Z. Zhu, “The Background of Error Estimation and Adaptivity in Finite Element Computations,” Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 4-6, 2006, pp. 207-213. doi:10.1016/j.cma.2004.07.053
[9] A. Duster, et al., “pq-Adaptive Solid Finite Elements for Three-Dimensional Plates and Shells,” Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 1-4, 2007, pp. 243-254. doi:10.1016/j.cma.2007.07.020
[10] Ph. Destuynder, et al., “Adaptive Mesh Refinements for Thin Shells Whose Middle Surface Is Not Exactly Known,” Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 51-52, 2008, pp. 4789-4811. doi:10.1016/j.cma.2008.07.001
[11] M. Ainsworth, et al., “A Framework for Obtaining Guar- anteed Error Bounds for Finite Element Approximations,” Journal of Computational and Ap-plied Mathematics, Vol. 234, No. 9, 2010, pp. 2618-2632. doi:10.1016/j.cam.2010.01.037
[12] J. H. Nie, et al., “Devel-opment of an Object-Oriented Finite Element Program with Adaptive Mesh Refinement for Multi-Physics Applications,” Advances in Engineering Software, Vol. 41, No. 4, 2010, pp. 569-579. doi:10.1016/j.advengsoft.2009.11.004
[13] V. S. Lukin, et al., “A Priori Mesh Quality Metric Error Analysis Applied to a High-Order Finite Element Method,” Journal of Computational Physics, Vol. 230, No. 14, 2011, pp. 5564-5586. doi:10.1016/j.jcp.2011.03.036
[14] K. J. Bathe, et al., “The Use of Nodal Point Forces to Improve Element Stresses”, Computers and Structures, Vol. 89, No. 5-6, 2011, pp. 485-495. doi:10.1016/j.compstruc.2010.12.002
[15] I. Katili, et al., “A New Discrete Kirchoff-Mindlin Element Based on Min-dlin-Reissner Plate Theory an Assumed Shear Strain Fields. Part 2: An Extended DKQ Element for Thick-Plate Bending Analysis,” International Journal for Numerical Methods in Engineering, Vol. 36, No. 11, 1993, pp. 1885-1908. doi:10.1002/nme.1620361107
[16] J. E. Akin, “Finite Element Analysis with Error Estimators,” Elsevier Butter-worth-Heinemann, Burlinton, 2005.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.