Robots in Ecology: Welcome to the machine

Abstract

Robots have primarily been developed for warfare, yet they also serve peaceful purposes. Their use in ecology is in its infancy, but they may soon become essential tools in a broad variety of ecological sub-disciplines. Autonomous robots, in particular drones sent to previously inaccessible areas, have revolutionized data acquisition, not only for abiotic parameters, but also for recording the behavior of undisturbed animals and collecting biological material. Robots will also play an essential role in population ecology, as they will allow for automatic census of individuals through image processing, or via detection of animals marked electronically. These new technologies will enable automated experimentation for increasingly large sample sizes, both in the laboratory and in the field. Finally, interactive robots and cyborgs are becoming major players in modern studies of animal behavior. Such rapid progress nonetheless raises ethical, environmental, and security issues.

Share and Cite:

Grémillet, D. , Puech, W. , Garçon, V. , Boulinier, T. and Maho, Y. (2012) Robots in Ecology: Welcome to the machine. Open Journal of Ecology, 2, 49-57. doi: 10.4236/oje.2012.22006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: Biodiversity synthesis. World Re sources Institute, Washington DC.
[2] Hubbell, S.P., He, F.L., Condit, R., Borda-de-Agua, L., Kellner, J. and ter Steege, H. (2008) How many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences of the United States of America, 105, 11498-11504. doi:10.1073/pnas.0801915105
[3] Fierer, N. and Lennon, J.T. (2011) The generation and maintenance of diversity in microbial communities. American Journal of Botany, 98, 439-448. doi:10.3732/ajb.1000498
[4] Bellingham, J.G. and Rajan, K. (2007) Robotics in remote and hostile environments. Science, 318, 1098-1102. doi:10.1126/science.1146230
[5] Singer, P.W. (2009) Wired for war: The robotics revolution and conflict in the 21st century. Penguin Books, London.
[6] Borges de Sousa, J. and Gon?alves, G.A. (2011) Unmanned vehicles for environmental data collection. Clean Technologies and Environmental Policy, 13, 369-380. doi:10.1007/s10098-010-0313-5
[7] Lipson, H. and Pollack, J.B. (2000) Automatic design and manufacture of robotic lifeforms. Nature, 406, 974- 978. doi:10.1038/35023115
[8] Kaufman, Y.J. and Koren, I. (2006) Smoke and Pollution Aerosol Effect on Cloud Cover. Science, 313, 655-658. doi:10.1126/science.1126232
[9] Madden, J.D. (2007) Mobile robots: Motor challenges and material solutions. Science, 318, 1094-1097. doi:10.1126/science.1146351
[10] Yildiz, O., Yilmaz A.E. and Gokalp, B. (2009) State-of- the-art system solutions for unmanned underwater vehi- cles. Radioengineering, 18, 590-600.
[11] Pfeiffer, R., Lungarella, M. and Iida, F. (2007) Self-Organization, Embodiment, and biologically inspired robot- ics. Science, 318, 1088-1093. doi:10.1126/science.1145803
[12] Sato, H. and Maharbiz, M.M. (2010) Recent developments in the radio control of insect flight. Frontiers in Neuroscience, 4, 199. doi:10.1126/science.1145803
[13] Wei, H., Wang, B., Wang, Y., Shao, Z. and Chan, K.C.C. (2012) Staying-alive path planning with energy optimization for mobile robots. Expert Systems with Applications, 39, 3559-3571. doi:10.1016/j.eswa.2011.09.046
[14] Roy, S.S. and Pratihar, D.K. (2012) Effects of turning gait parameters on energy consumption and stability of a six-legged walking robot. Robotics and Autonomous Systems, 60, 72-82. doi:10.1016/j.robot.2011.08.013
[15] Stirling, T., Wischmann, S. and Floreano, D. (2010) Energy-saving indoor search by swarms of simulated flying robots without global information. Swarm Intelligence, 4, 117-143. doi:10.1007/s11721-010-0039-3
[16] Zhang, W., Lu, Y.-H. and Hu, J. (2009) Optimal solutions to a class of power management problems in mobile robots. Automatica, 45, 989-996. doi:10.1016/j.automatica.2008.11.004
[17] Lever, J.H. and Ray, L.E. (2008) Revised solar-power budget for cool robot polar science campaigns. Cold Re- gions Science and Technology, 52, 177-190. doi:10.1016/j.coldregions.2007.02.009
[18] Joh, H.-I., Ha, T.J., Hwang, S.Y., Kim, J.-H., Chae, S.-H., Cho, J.H., Prabhuram, J., Kim, S.-K., Lim, T.-H., Cho, B.-K., Oh, J.-H., Moon, S.H. and Ha, H.Y. (2010) A direct methanol fuel cell system to power a humanoid robot. Journal of Power Sources, 195, 293-298. doi:10.1016/j.jpowsour.2009.07.014
[19] Descamps, S., Béchet, A., Descombes, X., Arnaud, A. and Zerubia, J. (2011) An automatic counter for aerial images of aggregations of large birds. Bird Study, 58, 302-308. doi:10.1080/00063657.2011.588195
[20] Ryan, J.P., Johnson, S.B., Sherman, A., Rajan, K., Py, F., Thomas, H., Harvey, J.B.J., Bird, L., Paduan, J.D. and Vrijenhoek, R.C. (2010) Mobile autonomous process sampling within coastal ocean observing systems. Limnology and Oceanography—Methods, 8, 394-402. doi:10.4319/lom.2010.8.394
[21] Zhang, Y.W., McEwen, R.S., Ryan, J.P. and Bellingham, J.G. (2010) Design and tests of an adaptive trigerring method for capturing peak samples in a thin phytoplankton layer by an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 35, 785-796. doi:10.1109/JOE.2010.2081031
[22] Dunford, R., Michel, K., Gagnage, M., Piegay, H. and Tremelo, M.L. (2009) Potentia and constraints of unmanned aerial vehicle technology for the characterization of mediterranean riparian forest. International Journal of Remote Sensing, 30, 4915-4935. doi:10.1080/01431160903023025
[23] Breckenridge, R.P., Dakins, M., Bunting, S., Harbour, J.L. and White, S. (2011) Comparison of unmanned aerial vehicle platforms for assessing vegetation cover in sagebrusch steppe ecosystems. Rangeland Ecology and Man- agement, 64, 521-532. doi:10.2111/REM-D-10-00030.1
[24] Armstrong, R.A., Singh, H., Torres, J., Nemeth, R.S., Can, A., Roman, C., Eustice, R., Riggs L. and Garcia-Moliner, G. (2006) Characterizing the deep insular shelf coral reef habitat of the Hind Bank marine conservation district (US Virgin Islands) using the seabed autonomous underwater vehicle. Continental Shelf Research, 26, 194-205. doi:10.1016/j.csr.2005.10.004
[25] Ura, T., Kumagai, M., Sakakibara, T., Kimura, Y., Oku- mura, T., Kazuyoshi, S., Sasaki, M. and Matsushima, M. (2002) Construction and operation of four autonomous underwater vehicles for lake survey. Proceedings of the 2002 International Symposium on Underwater Technol- ogy, Tokyo, 16-19 April 2002, 24-29. doi:10.1109/UT.2002.1002374
[26] Gulati, S., Richmond, K., Flesher, C., Hogan, B.P., Murarka, A., Kuhlmann, G., Sridharan, M., Stone, W.C. and Doran, P.T. (2010) Toward autonomous scientific exploration of ice-covered lakes-field experiments with endur- ance AUV in an Antarctic Dry Valley. Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, 3-7 May 2010, 308-315.
[27] Bishop, J.K.B., Davis, R.E. and Sherman, J.T. (2002) Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 298, 817-821. doi:10.1126/science.1074961
[28] Schofield, O., Ducklow, H.W., Martinson, D.G., Meredith, M.P., Moline, M.A. and Fraser, W.R. (2010) How do Polar Marine Environments Respond to Rapid Climate Change? Science, 328, 1520-1523. doi:10.1126/science.1185779
[29] Johnson, K.S., Berelson, W.M., Boss, E.S., Chase, Z., Claustre, H., Emerson, S.R., Gruber, N., K?rtzinger, A., Perry, M.J. and Riser, S.C. (2009) Observing biogeochemical cycles at global scales with profiling floats and gliders—Prospects for a global array. Oceanography, 22, 216-225. doi:10.5670/oceanog.2009.81
[30] K?rtzinger, A., Schimanski, J., Send, U. and Wallace, D. (2004) The ocean takes a deep breath. Science, 306, p. 1337. doi:10.1126/science.1102557
[31] Bell, G. and Gonzalez, A. (2011) Adaptation and evolutionary rescue in metapopulations experiencing environ- mental deterioration. Science, 332, 1327-1330. doi:10.1126/science.1203105
[32] Chapman, T. (2003) Lab automation and robotics—Automation on the move. Nature, 421, 661-666. doi:10.1038/421661a
[33] King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L.N., Sparkes, A., Whelan, K.E. and Clare, A. (2009) The automation of science. Science, 324, 85-89. doi:10.1126/science.1165620
[34] Sellers, W.I. and Manning, P.L. (2007) Estimating dinosaur maximum running speeds using evolutionary robots. Proceedings of the Royal Society B, 274, 2711-2716. doi:10.1098/rspb.2007.0846
[35] Mitri, S., Floreano, D. and Keller, L. (2010) Relatedness influences signal reliability in evolving robots. Proceedings of the Royal Society B, 278, 378-383. doi:10.1098/rspb.2010.1407
[36] Krause, J., Winfield A.F.T. and Deneubourg, J.-L. (2011) Interactive robots in experimental biology. Trends in Ecology and Evolution, 26, 369-375. doi:10.1016/j.tree.2011.03.015
[37] Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tache, F., Sa?d, I., Durier, V., Canonge, S., Amé, J.M., Detrain, C., Correll, N., Martinoli, A., Mondada, F., Siegwart, R. and Deneubourg, J.-L. (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318, 1155-1158. doi:10.1126/science.1144259
[38] Mitri, S., Floreano, D. and Keller, L. (2009) The evolution of information suppression in communicating robots with conflicting interests. Proceedings of the National Academy of Sciences of the United States of America, 106, 15786-15790. doi:10.1073/pnas.0903152106
[39] Krieger, M.J.B., Billeter, J.-B. and Keller, L. (2000) Ant-like task allocation and recruitment in cooperative robots. Nature, 406, 992-995. doi:10.1038/35023164
[40] Ord, T.J. and Stamps, J.A. (2009) Species identify cues in animal communication. American Naturalist, 174, 585-593. doi:10.1086/605372
[41] Edelman, G.M. (2007) Learning in and from brain-based devices. Science, 318, 1103-1105. doi:10.1126/science.1148677
[42] Meltzoff, A.N., Kuhl, P.K., Movellan, J., et al. (2009) Foundations for a new science of learning. Science, 325, 284-288. doi:10.1126/science.1175626
[43] Virilio, P. (2007) Speed and politics. MIT Press, Cambridge.
[44] Sepúlvera, A., Schluep, M., Renaud, F.G., Streicher, M., Kuehr, R., Hagelüken, C. and Gerecke, A.C. (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipment during recycling: Examples from China and India. Environmental Impact Assessment Review, 30, 28-41. doi:10.1016/j.eiar.2009.04.001
[45] Grémillet, D. (2008) Paradox of flying to meetings to protect the environment. Nature, 455, 1175. doi:10.1038/4551175a
[46] Ropert-Coudert, Y. and Wilson, R.P. (2005) Trends and perspectives in animal-attached remote sensing. Frontiers in Ecology and the Environment, 3, 437-444. doi:10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
[47] Lin, P., Abney, K. and Bekey, G. (2011) Robot Ethics: The ethical and social implications of robotics. MIT Press, Cambridge.
[48] Warren-Rhodes, K., Weinstein, S., Piatek, J.L., et al. (2007) Robotic ecological mapping: Habitats and the search for life in the Atacama Desert. Journal of Geophysical Research, 112, 1-16. doi:10.1029/2006JG000301

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.