The Impact of Climate Change on Crop Yields in Sub-Saharan Africa

DOI: 10.4236/ajcc.2012.11001   PDF   HTML     11,022 Downloads   26,003 Views   Citations


This study estimates of the impact of climate change on yields for the four most commonly grown crops (millet, maize, sorghum and cassava) in Sub-Saharan Africa (SSA). A panel data approach is used to relate yields to standard weather variables, such as temperature and precipitation, and sophisticated weather measures, such as evapotranspiration and the standardized precipitation index (SPI). The model is estimated using data for the period 1961-2002 for 37 countries. Crop yields through 2100 are predicted by combining estimates from the panel analysis with climate change predictions from general circulation models (GCMs). Each GCM is simulated under a range of greenhouse gas emissions (GHG) assumptions. Relative to a case without climate change, yield changes in 2100 are near zero for cassava and range from –19% to +6% for maize, from –38% to –13% for millet and from –47% to –7% for sorghum under alternative climate change scenarios.

Share and Cite:

E. Blanc, "The Impact of Climate Change on Crop Yields in Sub-Saharan Africa," American Journal of Climate Change, Vol. 1 No. 1, 2012, pp. 1-13. doi: 10.4236/ajcc.2012.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] UNDP, “Climate Change and the Millennium Development Goals,” 1998.
[2] O. Badiane and C. L. Delgado, “A 2020 Vision for Food, Agriculture, and the Environment in Sub-Saharan Africa,” International Food Policy Research Institute, Washington. DC, 1995.
[3] J. Rockstr?m, C. Folke, L. Gordon, N. Hatibu, G. Jewitt, F. Penning De Vries, F. Rwehumbiza, H. Sally, H. Savenije and R. Schulze, “A Watershed Approach to Upgrade Rainfed Agriculture in Water Scarce Regions through Water System Innovations: An Integrated Research Initiative on Water for Food and Rural Livelihoods in Balance with Ecosystem Functions,” Physics and Chemistry of the Earth, Vol. 29, 2004, pp. 1109-1118. doi:10.1016/j.pce.2004.09.0016
[4] C. Rosenzweig and M. L. Parry, “Potential Impacts of Climate Change on World Food Supply,” Nature, Vol. 367, No. 13, 1994, pp. 133-138.
[5] S. Barrios, B. Ouattara and E. Strobl, “The Impact of Climatic Change on Agricultural Production: Is It Different for Africa?” Food Policy, Vol. 33, No. 4, 2008, pp. 287-298. doi:10.1016/j.foodpol.2008.01.003
[6] A. Ben Mohamed, N. Van Duivenbooden and S. Abdoussallam, “Impact of Climate Change on Agricultural Production in the Sahel-Part 1: Methodological Approach and Case Study for Groundnut and Cowpea in Niger,” Climatic Change, Vol. 54, No. 3, 2002, pp. 327-348. doi:10.1023/A:1016189605188
[7] N. Van Duivenbooden, S. Abdoussallam and A. Ben Mohamed, “Impact of Climate Change on Agricultural Production in the Sahel-Part 2: Methodological Approach and Case Study for Millet in Niger,” Climatic Change, Vol. 54, No. 3, 2002, pp. 349-368. doi:10.1023/A:1016188522934
[8] W. Schlenker and D. B. Lobell, “Robust Negative Impacts of Climate Change on African Agriculture,” Environmental Research Letters, Vol. 5, No. 1, 2010, pp. 1-8. doi:10.1088/1748-9326/5/1/014010
[9] B. Oury, “Allowing for Weather in Crop Production Model Building,” American Journal of Agricultural Economics, Vol. 47, No. 2, 1965, pp. 270-283. doi:10.2307/1236574
[10] M. Upton, “African Farm Management,” Cambridge University Press, Cambridge, 1987.
[11] IAC, “Realizing the Promise and Potential of African Agriculture,” Internet Academy Council, 2004.
[12] FAO/AGL, “Terrastat Database,” 2009.
[13] FAO, “The State of Food and Agriculture: Lessons from the Past 50 Years,” Food and Agricultural Organization of the United Nations, Rome, 2000.
[14] M. G. Wolman and F. G. A. Fournier, “Agricultural Practices Leading to Land Transformation: Introduction,” In: M. G. Wolman and F. G. A. Fournier, Eds., Land Transformation in Agriculture, John Wiley & Sons, Chichester, 1987, p. 531.
[15] F. Zaal, T. Dietz, J. Brons, K. Van Der Geest and E. Ofori-Sarpong, “Sahelian Livelihoods on the Rebound: A Critical Analysis of Rainfall, Drought Index and Yields in Sahelian Agriculture,” The Impact of Climate Change on Drylands, Vol. 39, 2004, pp. 61-77. doi:10.1007/1-4020-2158-5_7
[16] H. Larsson, “Relationships between Rainfall and Sorghum, Millet and Sesame in the Kassala Province, Eastern Sudan,” Journal of Arid Environments, Vol. 32, No. 2, 1996, pp. 211-223. doi:10.1006/jare.1996.0018
[17] A. M. Fermont, P. J. A. Van Asten, P. Tittonell, M. T. Van Wijk and K. E. Giller, “Closing the Cassava Yield Gap: An Analysis from Smallholder Farms in East Africa,” Field Crops Research, Vol. 112, No. 1, 2009, pp. 24-36. doi:10.1016/j.fcr.2009.01.009
[18] P. D. Jones and M. Hulme, “Calculating Regional Climatic Time Series for Temperature and Precipitation: Methods and Illustrations,” International Journal of Climatology, Vol. 16, No. 4, 1996, pp. 361-377. doi:10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F
[19] T. B. McKee, N. J. Doesken and J. Kleist, “The Relationship of Drought Frequency and Duration to Time Scales,” 8th Conference on Applied Climatology, California, 17-22 January 1993, pp. 179-184.
[20] C. F. Yamoah, G. E. Varvel, C. A. Francis and W. J. Waltman, “Weather and Management Impact on Crop Yield Variability in Rotations,” Journal of Production Agriculture, Vol. 11, No. 2, 1998, pp. 219-225.
[21] C. F. Yamoah, G. E. Varvel and J. Adu-Gyamfi, “Preplant Moisture and Fertility Conditions as Indicators of High and Stable Yields in Rainfed Cropping Systems,” Food Security in Nutrient Stressed Environments: Exploiting Plants’ Genetic Capabilities—Summary and Recommendations of an International Workshop, Patancheru, 27-30 September 1999, pp. 114-115.
[22] B. Narasimhan and R. Srinivasan, “Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring,” Agricultural and Forest Meteorology, Vol. 133, No. 1-4, 2005, pp. 69-88. doi:10.1016/j.agrformet.2005.07.012
[23] R. A. Seiler, M. Hayes and L. Bressan, “Using the Standardized Precipitation Index for Flood Risk Monitoring,” International Journal of Climatology, Vol. 22, No. 11, 2002, pp. 1365-1376. doi:10.1002/joc.779
[24] S. Quirogua and A. Iglesias, “Methods for Drought Risk Analysis in Agriculture,” Options Méditerranéennes, Vol. 58, 2007, pp. 103-113.
[25] A. Iglesias and S. Quirogua, "Measuring the risk of climate variability to cereal production at five sites in Spain", Climate Research, Vol. 34, 2007, pp. 47-57.
[26] E. Strobl, R.O. Strobl, "The distributional impact of large dams: Evidence from cropland productivity in Africa", Journal of Development Economics, Vol. 96, No. 2, 2010, pp. 1-19.
[27] P. A. O. Odjugo, “The Impact of Tillage Systems on Soil Microclimate, Growth and Yield of Cassava (Manihot utilisima) in Midwestern Nigeria,” African Journal of Agricultural Research, Vol. 3, No. 3, 2008, pp. 225-233.
[28] D. B. Lobell and C. B. Field, “Global Scale Climate-Crop Yield Relationships and the Impacts of Recent Warming,” Environmental Research Letters, Vol. 2, No. 1, 2007, pp. 1-7. doi:10.1088/1748-9326/2/1/014002
[29] C.-C. Chen, B. A. McCarl and D. Schimmelpfennig, “Yield Variability as Influenced by Climate: A Statistical Investigation,” Climatic Change, Vol. 66, No. 2, 2000, pp. 239-261. doi:10.1023/B:CLIM.0000043159.33816.e5
[30] C. J. Kucharik and S. P. Serbin, “Impacts of Recent Climate Change on Wisconsin Corn and Soybean Yield Trends,” Environmental Research Letters, Vol. 3, No. 3, 2008, pp. 1-10. doi:10.1088/1748-9326/3/3/034003
[31] N. Maman, D. J. Lyon, S. Mason, T. D. Galusha and R. Higgins, “Pearl Millet and Grain Sorghum Yield Response to Water Supply in Nebraska,” Agronomy Journal, Vol. 95, No. 16, 2003, pp. 1618-1624.
[32] G. Abbas, A. Hussain, A. Ahmad and S. A. Wajid, “Water Use Efficiency of Maize as Affected by Irrigation Schedules and Nitrogen Rates,” Journal of Agriculture & Social Sciences, Vol. 1, No. 4, 2005, pp. 339-342.
[33] R. K. Pandey, J. W. Maranville and A. Admou, “Deficit Irrigation and Nitrogen Effects on Maize in a Sahelian Environment: I. Grain Yield and Yield Components,” Agricultural Water Management, Vol. 46, No. 1, 2000, pp. 1-13. doi:10.1016/S0378-3774(00)00073-1
[34] G. H. Hargreaves and Z. A. Samani, “Reference Crop Evapotranspiration from Temperature,” Applied Engineering in Agriculture, Vol. 1, No. 2, 1985, pp. 96-99.
[35] R. G. Allen, L. S. Pereira, D. Raes and M. Smith, “Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements,” FAO Irrigation and Drainage Paper, FAO, Rome, 1998.
[36] M. Morris, V. A. Kelly, R. J. Kopicki and D. Byerlee, “Fertilizer Use in African Agriculture: Lessons Learned and Good Practice Guidelines,” In: Directions in Development—Agriculture and Rural Development, World Bank, Washington DC, 2007. doi:10.1596/978-0-8213-6880-0
[37] FAO, “Fertilizer Requirements in 2015 and 2030 Revisited,” FAO, Rome, 2004.
[38] J.-M. Faurès and G. Santini, “Water and the Rural Poor— Interventions for Improving Livelihoods in Sub-Saharan Africa,” FAO, Land and Water Division, Rome, 2008.
[39] FAO, “Seed Policy and Programmes for Sub-Saharan Africa: Proceedings of the Regional Technical Meeting on Seed Policy and Programmes for Sub-Saharan Africa,” Food and Agriculture Organization of the United Nations, Rome, 1998.
[40] T. Teklu, J. V. Braum and E. Zaki, “Drought and Famine Relationships in Sudan: Policy Implication,” International Food Policy Research Institute (IFPRI), 1991.
[41] C. F. Yamoah, D. T. Walters, C. A. Shapiro, C. A. Francis and M. J. Hayes, “Standardized Precipitation Index and Nitrogen Rate Effects on Crop Yields and Risk Distribution in Maize,” Agriculture Ecosystems & Environment, Vol. 80, No. 1-2, 2000, pp. 113-120. doi:10.1016/S0167-8809(00)00140-7
[42] R. W. Malone, D. W. Meek, J. L. Hatfield, M. E. Mann, R. J. Jaquis and L. Ma, “Quasi-Biennial Corn Yield Cycles in Iowa,” Agricultural and Forest Meteorology, Vol. 149, No. 6-7, 2009, pp. 1087-1094. doi:10.1016/j.agrformet.2009.01.009
[43] S. Shaik and G. A. Helmers, “Intertemporal and Interspatial Variability of Climate Change on Dryland Winter Wheat Yield Trends,” Agricultural Economics, University of Nebraska-Lincoln, Lincoln, 2000.
[44] P. Collier and African Studies Association Meeting, “Africa and the Study of Economics,” In: R. H. Bates, V. Y. Mudimbe and J. F. O’Barr, Eds., Africa and the Disciplines: The Contribution of Research in Africa to the Social Sciences and Humanities, University of Chicago Press, Chicago, 1993.
[45] J. A. Dixon, A. Gulliver and D. P. Gibbon, “Farming Systems and Poverty—Improving Farmers’ Livelihoods in a Changing World,” Food and Agriculture Organization of the United Nations and World Bank, 2001.
[46] X. Diao, P. Hazell, D. Resnick and J. Thurlow, “The Role of Agriculture in Development: Implications for Sub-Saharan Africa,” International Food Policy Research Institute (IFPRI), 2006.
[47] D. G. Kleinbaum, L. L. Kupper, A. Nizam and K. E. Muller, “Applied Regression Analysis and Other Multivariable Methods,” 4th Edition, Duxbury Press, Duxbury, 2008.
[48] Y. Ganzach, “Misleading Interaction and Curvilinear Terms,” Psychological Methods, Vol. 2, No. 3, 1997, pp. 235247. doi:10.1037/1082-989X.2.3.235
[49] K. Hadri, “Testing for Stationarity in Heterogeneous Panel Data,” The Econometrics Journal, Vol. 3, No. 2, 2000, pp. 148-161. doi:10.1111/1368-423X.00043
[50] A. Levin, C.-F. Lin and C.-S. J. Chu, “Unit Root Tests in Panel Data: Asymptotic and Finite Sample Properties,” Journal of Econometrics, Vol. 108, No. 1, 2002, pp. 1-24. doi:10.1016/S0304-4076(01)00098-7
[51] K. S. Im, M. H. Pesaran and Y. Shin, “Testing for Unit Roots in Heterogeneous Panels,” Journal of Econometrics, Vol. 115, No. 1, 2003, pp. 53-74. doi:10.1016/S0304-4076(03)00092-7
[52] G. S. Maddala and S. Wu, “A Comparative Study of Unit Root Tests With Panel Data and a New Simple Test,” Oxford Bulletin of Economics and Statistics, Vol. 61, No. S1, 1999, pp. 631-652. doi:10.1111/1468-0084.0610s1631
[53] G. Elliott, T. J. Rothenberg and J. H. Stock, “Efficient Tests for an Autoregressive Unit Root,” Journal of Econometrics, Vol. 64, No. 4, 1996, pp. 813-836.
[54] D. Kwiatkowski, P. C. B. Phillips, P. Schmidt and Y. Shin, “Testing the Null Hypothesis of Stationarity against the Alternative of Unit Root,” Journal of Econometrics, Vol. 54, No. 1-3, 1992, pp. 159-178.
[55] G. S. Maddala and I.-M. Kim, “Unit Roots, Cointegration, and Structural Change,” Cambridge University Press, Cambridge, 1998.
[56] G. W. Schwert, “Tests for Unit Roots: A Monte Carlo Investigation,” Journal of Business and Economic Statistics, Vol. 7, 1989, pp. 147-160.
[57] P. Pedroni, “Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis,” Econometric Theory, Vol. 20, No. 3, 2004, pp. 597-625. doi:10.1017/S0266466604203037
[58] P. Pedroni, “On the Role of Cross-Sectional Dependency in Panel Unit Root and Panel Cointegration Exchange Rate Studies,” Working Paper, Department of Economics, Indiana University, 1997.
[59] P. Pedroni, “Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors,” Oxford Bulletin of Economics and Statistics, Vol. 61, No. S1, 1999, pp. 653-670. doi:10.1111/1468-0084.0610s1653
[60] S. McCoskey and C. Kao, “A Residual-Based Test of the Null of Cointegration in Panel Data,” Econometric Reviews, Vol. 17, No. 1, 1998, pp. 57-84. doi:10.1080/07474939808800403
[61] C. Kao, “Spurious Regression and Residual-Based Tests for Cointegration in Panel Data,” Journal of Econometrics, Vol. 90, 1999, pp. 1-44.
[62] J. Westerlund, “Testing for Error Correction in Panel Data,” Oxford Bulletin of Economics and Statistics, Vol. 69, No. 6, 2007, pp. 709-748. doi:10.1111/j.1468-0084.2007.00477.x
[63] W. H. Greene, “Econometric Analysis,” 4th Edition, Prentice Hall, Upper Saddle River, 2000.
[64] M. H. Pesaran, “General Diagnostic Tests for Cross Section Dependence in Panels,” Cambridge Working Papers in Economics, University of Cambridge, Cambridge, 2004.
[65] M. Arellano and S. Bond, “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations,” The Review of Economic Studies, Vol. 58, No. 2, 1991, pp. 277-297. doi:10.2307/2297968
[66] FAOSTAT, “FAO Statistical Databases,” 2007.
[67] T. D. Mitchell and P. D. Jones, “An Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-Resolution Grids,” International Journal of Climatology, Vol. 25, No. 6, 2005, pp. 693-712. doi:10.1002/joc.1181
[68] B. Leff, N. Ramankutty and J. Foley, “Geographic Distribution of Major Crops across the World,” Global Biogeochemical Cycles, Vol. 18, 2004. doi:10.1029/2003GB002108
[69] H. B. Gordon and S. P. O’Farrell, “Transient Climate Change in the CSIRO Coupled Model with Dynamic Sea ice,” Monthly Weather Review, Vol. 125, No. 5, 1997, 875-907. doi:10.1175/1520-0493(1997)125<0875:TCCITC>2.0.CO;2
[70] C. Gordon, C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell and R. A. Wood, “The Simulation of SST, Sea Ice Extents and Ocean Heat Transports in a Version of the Hadley Centre coupled Model without Flux Adjustments,” Climate Dynamics, Vol. 16, No. 2-3, 2000, pp. 147-168. doi:10.1007/s003820050010
[71] G. M. Flato and G. J. Boer, “Warming Asymmetry in Climate Change Simulations,” Geophysical Research Letters, Vol. 28, No. 1, 2001, pp. 195-198.
[72] E. Roeckner, J. M. Oberhuber, A. Bacher, M. Christoph and I. Kirchner, “ENSO Variability and Atmospheric Response in a Global Coupled Atmosphere-Ocean GCM,” Climate Dynamics, Vol. 12, No. 11, 1996, pp. 737-754. doi:10.1007/s003820050140
[73] W. M. Washington, J. W. Weatherly, G. A. Meehl, A. J. Semtner Jr., T. W. Bettge, A. P. Craig, W. G. Strand Jr., J. Arblaster, V. B. Wayland, R. James and Y. Zhang, “Parallel Climate Model (PCM) Control and Transient Simulations,” Climate Dynamics, Vol. 16, No. 10-11, 2000, pp. 755-774. doi:10.1007/s003820000079
[74] IPCC, “Special Report on Emissions Scenarios,” Cambridge University Press, Cambridge, 2000.
[75] P. E. Kennedy, “A guide to Econometrics,” 5th Edition, The MIT Press, Cambridge, 2003.
[76] J. Michaelsen, “Cross-Validation in Statistical Climate Forecast Models,” Journal of Climate and Applied Meterorology, Vol. 26, 1987, pp. 1589-1600. doi:10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2
[77] G. Fischer, H. Van Velthuizen, M. Shah and F. Nachtergaele, “Global Agro-Ecological Assessment for Agriculture in the 21st Century: Methodology and Results,” International Institute for Applied Systems Analysis Laxenburg and Austria and Food and Agriculture Organization of the United Nations, Rome, 2002.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.