Effect of Exercise Program on the Rehabilitation of Patients with Cervical Spondylotic Myelopathy


Study Design: A clinical trial of 30 consecutive patients with cervical spondylotic myelopathy (CSM). Objectives: To evaluate the effect of directed physical exercise in patients with CSM and to measure severity of myelopathy before and after an exercise program. Setting: Christian Medical College and Hospital, India. Participants: Thirty patients with CSM (mean age-54.1 years) with Nuricks Grade 2 and 3. Background: Myelopathy of the spinal cord can be caused by degenerative process of the cervical vertebrae and it is the most common type of dysfunction of the spinal cord in adult population. CSM usually develops insidiously and the natural history is not well understood, there is debate over the indication for operative Vs non operative management. Method: Patients participated in a 6-week exercise program, consisting of active exercises to upper and lower extremities, scapulothoracic muscles, and gentle stretches, sub maximal isometric exercises of the deep neck flexors, relaxation and immobilization with a cervical collar. Main Outcome Measures: The mJOA (modified Japanese orthopaedic association score) and ASIA motor and sensory scoring. The results were processed by using Wilcoxon sign rank test. Results: After comparing the values at the beginning and end of the program a satisfactory neurological result (sensorimotor/motor and sensory) was obtained in all thirty patients. Conclusion: The exercise program had a positive impact for most of the variables of the study. Exercise intervention with neck immobilization may be a treatment of choice in early stages of CSM. Future randomized controlled studies would provide insight into the effectiveness and clinical relevance of this intervention.

Share and Cite:

N. Sundaramurthy Senthil Kumar, N. Lal and D. Rajalakshmi, "Effect of Exercise Program on the Rehabilitation of Patients with Cervical Spondylotic Myelopathy," Neuroscience and Medicine, Vol. 3 No. 1, 2012, pp. 54-59. doi: 10.4236/nm.2012.31008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Adams, Logue and Valentine, “The Movement and Contour of the Spine in Relation to the Neural Complications of Cervical Spondylosis,” Brain, Vol. 94, No. 3, 1971, pp. 569-586. doi:10.1093/brain/94.3.569
[2] J. G. Arnold Jr., “The Clinical Manifestations of Spondylochondrosis (Spondylosis) of the Cervical Spine,” Annuals of Surgery, Vol. 141, No. 6, 1955, pp. 872-889.
[3] D. M. Basso, “Neuroanatomical Substrates of Functional Recovery after Experimental Spinal Cord Injury: Implications of Basic Science Research for Human Spinal Cord Injury,” Physical Therapy, Vol. 80, No. 8, 2000, pp. 808- 817.
[4] A Breig, I Turnbull and O Hassler, “Effects of Mechanical Stresses on the Spinal Cord in Cervical Spondylosis. A Study on Fresh Cadaver Material,” Journal of neurosurgery, Vol. 25, No. 1, 1966, pp. 45-56. doi:10.3171/jns.1966.25.1.0045
[5] J. F. Cusick, “Monitoring of Cervical Spondylotic Myclopathy,” Spine, Vol. 13, No. 7, 1988, pp. 877-880. doi:10.1097/00007632-198807000-00033
[6] W. F. Young, “Cervical Spondylotic Myelopathy: A Common Cause of Spinal Cord Dysfunction in Older Persons,” American Family Physician, Vol. 62, No. 5, 2000, pp. 1064-1070, 1073.
[7] A. A. White and M. M. Panjabi, “Biomechanical Considerations in the Surgical Management of Cervical Spondylotic Myelopathy,” Spine, Vol. 13, No. 7, 1988, pp. 856- 860. doi:10.1097/00007632-198807000-00029
[8] F. Lees and J. W. Turner, “Natural History and Prognosis of Cervical Spondylosis,” British Medical Journal, Vol. 2, No. 5373, 1963, pp. 1607-1610.
[9] M. Panjabi and A. White 3rd, “Biomechanics of Nonacute Cervical Spinal Cord Trauma,” Spine, Vol. 13, No. 7, 1988, pp. 838-842. doi:10.1097/00007632-198807000-00024
[10] W. W. Parke, “Correlative Anatomy of Cervical Spondylotic Myelopathy,” Spine, Vol. 13, No. 7, 1988, pp. 831- 837. doi:10.1097/00007632-198807000-00023
[11] K. Fujiwara, K. Yonenobu, S. Ebara, K. Yamashita and K. Ono, “The Prognosis of Surgery for Cervical Compression Myelopathy. An Analysis of the Factors Involved,” The Journal of Bone and Joint Surgery, Vol. 71, No. 3, 1989, pp. 393-398.
[12] F. K .Gregonus, T. Estrin, P. H. Crandall, “Cervical Spondylotic Radiculopathy and Myelopathy. A Long-Term Follow-Up Study,” Archives of Neurology, Vol. 33 No. 9, 1976, pp. 618-625. doi:10.1001/archneur.1976.00500090024005
[13] D. Mont-gomery and R. S. Brower, “Cervical Spondylotic Myelopathy: Clinical Syndromes and Natural History,” The Orthopedic Clinics of North America, Vol. 23, No. 3, 1992, pp. 487-493.
[14] K. Yonenobu, K. Okada, T. Fuji, K. Fujiwara, K. Yamashita and K. Ono, “Causes of Neurologic Deterioration Following Surgical Treatment of Cervical Myelopathy,” Spine, Vol. 11, No. 8, 1986, pp. 818-823. doi:10.1097/00007632-198610000-00016
[15] M. E. Schwab and D. Bartholdi, “Degeneration and Re- generation of Axons in the Lesioned Spinal Cord,” Phy- siological Reviews, Vol. 76, No. 2, 1996, pp. 319-370.
[16] K. E. Williams, R. Paul and Y. Dewan, “Functional Outcome of Corpectomy in Cervical Spondylotic Myelopathy,” Indian Journal of Orthropaedics, Vol. 43, No. 2, 2009, pp. 205-209. doi:10.4103/0019-5413.50855
[17] S. M. Petersen, “Articular and Muscular Impairments in Cervicogenic Headache: A Case Report,” The Journal of Orthopedic and Sports Physical Ther-apy, Vol. 33, No. 1, 2003, pp. 21-30.
[18] T. W. Flynn, J. M., Whitman and J. Magel, “Orthopaedic Manual Physical Therapy Management of the Cervical- Thoracic Spine and Ribcage,” Manipulations, Inc., Fort Collins, 2000.
[19] K. Hirabayashi, K. Watanabe, K. Wakano, N. Suzuki, K. Satomi and Y. Ishii, “Expansive Open-Door Laminoplasty for Cervical Spinal Stenotic Myelopathy,” Spine, Vol. 8, No. 7, 1983, pp. 693-699. doi:10.1097/00007632-198310000-00003
[20] F. Go-mez-Pinilla, Z. Ying, R. R. Roy, R. Molteni and V. R. Edgerton, “Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity.” Journal of Neurophysiology, Vol. 88, No. 5, 2002, pp. 2187- 2195. doi:10.1152/jn.00152.2002
[21] F. Gómez-Pinilla, Z. Ying, P. Opazo, R. R. Roy and V. R. Edgerton, “Differential Regulation by Exercise of BDNF and NT-3 in Rat Spinal Cord and Skeletal Muscle,” The European Journal of Neurosciences, Vol. 13, No. 6, 2001, pp. 1078-1084. doi:10.1046/j.0953-816x.2001.01484.x
[22] V. R. Edgerton, J. K. Niranjala, Tillakaratne, A. J. Bigbee, R. D. de Leon and R. R. Roy, “Plasticity of the Spinal Neural Circuitry after Injury,” The Annual Review of Neuro- science, Vol. 27, 2004, pp. 145-167.
[23] S. A. Neeper, F. Gomez-Pinilla, J. Choi and C. W. Cotman, “Physical Activity Increases mRNA for Brain-Derived Neurotrophic Factor and Nerve Growth Factor in Rat Brain,” Brain Research, Vol. 726, No. 1-2, 1996, pp. 49-56. doi:10.1016/0006-8993(96)00273-9
[24] Z. Ying, R. R. Roy, V. R. Edgerton and F. Gómez-Pinilla, “Voluntary Exercise Increases Neurotrophin-3 and Its Receptor TrkC in the Spinal Cord,” Brain Research, Vol. 987, No. 1, 2003, pp. 93-99. doi:10.1016/S0006-8993(03)03258-X
[25] P. Carroll, G. R. Lewin, M. Koltzenburg, K. V. Toyka and H. Thoenen, “A Role for BDNF in Mechanosensation,” Nature Neuroscience, Vol. 1, No. 1, 1998, pp. 42- 46. doi:10.1038/242
[26] V. R. Edgerton, R. D. de Leon, S. J. Harkema, J. A. Hodgson, N. London, D. J. Reinkensmeyer, R. N. Roy, R. J. Talmadge, N. J. Tillakaratne, W. Timoszyk and A. Tobin, “Retraining the Injured Spinal Cord,” Journal of Physiology, Vol. 533, No. 1, 2001, pp 15-22.
[27] J. Widenfalk, K. Lundstromer, M. Jubran, S. Brene and L. Olson, “Neurotrophic Factors and Receptors in the Im-mature and Adult Spinal Cord after Mechanical Injury or Kainic Acid,” The Journal of Neuroscience, Vol. 21, No. 10, 2001, pp. 3457-3475.
[28] V. R. Edgerton, R. D. de Leon, N. Tillakaratne, M. R. Recktenwald, J. A. Hodgson and R. R. Roy, “Use-Dependent Plasticity in Spinal Stepping and Standing,” Advances in Neurology, Vol. 72, 1997, pp. 233-247.
[29] B. A. Conway, H. Hultborn and O. Kiehn, “Proprioceptive Input Resets Central Locomotor Rhythm in the Spinal Cat,” Experimental Brain Research, Vol. 68, No. 3, 1987, pp. 643-656. doi:10.1007/BF00249807
[30] R. D. De Leon, J. A. Hodgson, R. R. Roy and V. R. Edgerton, “Locomotor Capacity Attributable to Step Training versus Spontaneous Recovery after Spinalization in Adult Cats,” Journal of Neurophysiology, Vol. 79, No. 3, 1998, pp. 1329-1340.
[31] K. J. Hutchinson, J. K. Linderman and D. M. Basso, “Skeletal Muscle Adaptations Following Spinal Cord Contusion Injury in Rat and the Relationship to Locomotor Function: A Time Course Study,” Journal of Neurotrauma, Vol. 18, No. 10, 2001, pp. 1075-1089. doi:10.1089/08977150152693764
[32] S. J. Harkema, S. L. Hurley, U. K. Patel, P. S. Requejo, B. H. Dobkin and V. R. Edgerton, “Human Lumbosacral Spinal Cord Interprets Loading during Stepping,” Journal of Neurophysiology, Vol. 77, No. 2, 1997, pp. 797-811.
[33] O. Andersson, S. Grillner, M. Lindquist and M. Zomlefer, “Peripheral Control of the Spinal Pattern Generators for Locomotion in Cat,” Brain Research, Vol. 150, No. 3, 1978, pp. 625-630. doi:10.1016/0006-8993(78)90827-2
[34] O. Andersson and S. Grillner, “Peripheral Control of the Cat’s Step Cycle, II: Entrainment of the Central Pattern Generators for Locomotion by Sinusoidal Hip Movements during ‘Fictive Locomotion’,” Acta Physiologica Scandinavica, Vol. 118, No. 3, 1983, pp. 229-239. doi:10.1111/j.1748-1716.1983.tb07267.x
[35] H. Barbeau, D. A. McCrea, M. J. O’Donovan, S. Rossignol, W. M. Grill and M. A. Lemay, “Tapping into Spinal Circuits to Restore Motor Function,” Brain Research, Brain Research Reviews, Vol. 30, No. 1, 1999, pp. 27-51. doi:10.1016/S0165-0173(99)00008-9
[36] H. Barbeau and S. Rossignol, “Recovery of Locomotion after Chronic Spinalization in the Adult Cat,” Brain Research, Vol. 412, No. 1, 1987, pp. 84-95. doi:10.1016/0006-8993(87)91442-9
[37] B. H, Dobkin, S. J. Harkema, P. S. Requejo and V. R. Edgerton, “Modulation of Locomotor-Like EMG Activity in Subjects with Complete and Incomplete Spinal Cord Injury,” Journal of Neurologic Rehabilitation, Vol. 9, No. 4, 1995, pp. 183-190.
[38] H. Forssberg, “Stumbling Corrective Reaction: A Phase-Dependent Com-pensatory Reaction during Locomotion,” Journal of Neurophysiology, Vol. 42, No. 4, 1979, pp. 936-953.
[39] S. Grillner, “Interaction between Central and Peripheral Mechanisms in the Control of Locomotion,” Progress in Brain Research, Vol. 50, 1979, pp. 227-235. doi:10.1016/S0079-6123(08)60823-7
[40] S Grillner, “Neurobiological Bases of Rhythmic Motor Acts in Vertebrates,” Science, Vol. 228, No. 4696, 1985, pp. 143-149. doi:10.1126/science.3975635
[41] S. Grillner and S. Rossignol, “On the Initiation of the Swing Phase of Locomotion in Chronic Spinal Cats,” Brain Research, Vol. 146, No. 2, 1978, pp. 269-277. doi:10.1016/0006-8993(78)90973-3
[42] K. G. Pearson and S. Rossignol, “Fictive Motor Patterns in Chronic Spinal Cats,” Journal of neurophysiology, Vol. 66, No. 6, 1991, pp. 1874-1887.
[43] A Wernig and S Muller, “Laufband Locomotion with Body Weight Support Improved Walking in Persons with Severe Spinal Cord Injuries,” Paraplegia, Vol. 30, No. 4, 1992, pp. 229-238. doi:10.1038/sc.1992.61
[44] V. Dietz, “Spinal Cord Lesion: Effects of and Perspectives for Treatment,” Neural Plasticity, Vol. 8, No. 1-2, 2001, pp. 83-90. doi:10.1155/NP.2001.83
[45] A. L. Behrman and S. J. Harke-ma, “Locomotor Training after Human Spinal Cord Injury: A Series of Case Studies,” Physical Therapy, Vol. 80, No. 7, 2000, pp. 688-700.
[46] R. G. Lovely, R. J. Gregor, R. R. Roy and V. R. Edgerton, “Effects of Training on the Recovery of Full-Weight- Bearing Stepping in the Adult Spinal Cat,” Experimental Neurology, Vol. 92, No. 2, 1986, pp. 421-435. doi:10.1016/0014-4886(86)90094-4

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.