Share This Article:

Variation of the Structural Properties of IV Element Nano Clusters Due to Tensile Stress

Abstract Full-Text HTML Download Download as PDF (Size:845KB) PP. 16-23
DOI: 10.4236/wjcmp.2012.21003    3,753 Downloads   7,373 Views   Citations

ABSTRACT

CNDO/2 method with 27 unit cells composed of 216 atoms, has been used for calculating and studying the lattice constant, density, total energy, cohesive energy, bulk modulus, microhardness, Young modulus, speed of sound, acoustic phonons energy, plasmon energy and vibrational energy, for diamond, silicon, germanium, and gray tin subjected to tensile stress. And to investigate the categories of these clusters; do these clusters have properties of nano materials or properties of bulk materials? It is found that most values of the investigated properties decrease with tensile stress except the lattice constant and the vibrational energy. In addition, two simple formulas have been established for both the bulk modulus and plasmon energy. It is found that the investigated clusters show bulk behavior.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Mijbil, H. Aboud and A. Abdul-Lettif, "Variation of the Structural Properties of IV Element Nano Clusters Due to Tensile Stress," World Journal of Condensed Matter Physics, Vol. 2 No. 1, 2012, pp. 16-23. doi: 10.4236/wjcmp.2012.21003.

References

[1] F. Cataldo, “Carbon Allotropy and Carbon Black,” Kauts- chuk Gummi Kunststoffe, Vol. 54, No. 1-2, 2001, pp. 22-28.
[2] C. W. Myles, J. Dong and O. F. Sankey, “Structural and Elec-tronic Properties of Tin Clathrate Materials,” Physi- cal Review B, Vol. 64, No. 16, 2001, pp. 165202-165212. doi:10.1103/PhysRevB.64.165202
[3] M. Gaith and I. Al-hayek, “Correlation between Overall Elastic Stiffness, Bulk Modulus and Interatomic Distance in Anisotropic Materials: Semiconductors,” Reviews on Advanced Materials Science, Vol. 21, No. 2, 2009, pp. 183-191.
[4] M. Gabrysch, “Electronic Properties of Diamond,” Uppsala University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8675
[5] M. Virgilio, G. Pizzi and G. Grosso, “Optical Gain in Short Period Si/Ge Superlattices on [001]-SiGe Substrates,” Journal of Ap-plied Physics, Vol. 110, No. 8, 2011, pp. 083105-083112. doi:10.1063/1.3651196
[6] M. Upadhyay, S. Murugavel, M. Anbarasu and T. R. Ravindran, “Structural Study on Amor-phous and Crystalline State of Phase Change Material,” Journal of Applied Physics, Vol. 110, No. 8, 2011, pp. 083711-083716. doi:10.1063/1.3653265
[7] R. E. Stallcup II, L. M. Villarreal, S. C. Lim, I. Akwani, A. F. Aviles and J. M. Perez, “Atomic Structure of the Diamond (100) Surface Studied Using Scan-ning Tunneling Microscopy,” Journal of Vacuum Science and Technology B, Vol. 14, No. 2, 1996, pp. 929-932. doi:10.1116/1.589177
[8] B. K. Serdega, E. V. Nikitenko and Prikhodenko, “Effect of Surface Condition on Strain in Semi-conductor Crystal Sample,” Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 4, No. 1, 2001, pp. 9-11.
[9] J. Pollmann, P. Krüger, M. Rohlfing, M. Sabisch and D. Vogel, “Ab Initio Calculations of Structural and Elec-tronic Properties of Prototype Surfaces of Group IV, III-V and II-VI Semiconductors,” Applied Surface Science, Vol. 104-105, 1996, pp. 1-16. doi:10.1016/S0169-4332(96)00114-6
[10] A. Otero-de-la-Roza and V. Lua?a, “Topological Characterization of the Electron Density Laplacian in Crystals. The Case of the Group IV Elements,” Journal of Chemical Theory and Compu-tation, Vol. 6, No. 12, 2010, pp. 3761-3979. doi:10.1021/ct100269e
[11] L. A. Woldering, L. Abelmann and M. C. Elwenspoek, “Predicted Photonic Band Gaps in Diamond-Lattice Crystals Built from Silicon Truncated Tet-rahedrons,” Journal of Applied Physics, Vol. 110, No. 4, 2011, pp. 043107- 043114. doi:10.1063/1.3624604
[12] Q. Zhou, X. Hu, K. Al-Hemyari, K. McCarthy, L. Domash and J. A. Hudg-ings, “High Spatial Resolution Characterization of Silicon Solar Cells Using Thermoreflectance Imaging,” Journal of Applied Physics, Vol. 110, No. 5, 2011, pp. 053108-053113. doi:10.1063/1.3629979
[13] J. Kim and D. Ahn, “Effect of Indirect Interband Absorption in Ge/SiGe Quantum Wells,” Journal of Applied Physics, Vol. 110, No. 8, 2011, pp. 083119-083128. doi:10.1063/1.3656688
[14] C. Q. Sun, “Size Dependence of Nanostructures: Impact of Bond Order Deficiency,” Progress in Solid State Che- mistry, Vol. 35, No. 1, 2007, pp. 1-159. doi:10.1016/j.progsolidstchem.2006.03.001
[15] M. M. Shok-rieh and R. Rafiee, “Prediction of Young’s Modulus of Graphene Sheets and Carbon Nanotubes Using Nanoscale Continuum Mechanics Approach,” Materials and Design, Vol. 31, No. 2, 2010, pp. 790-795. doi:10.1016/j.matdes.2009.07.058
[16] J. A. Pople and D. L. Beveridge, “Approximate Molecular Orbital Theory,” McGraw-Hill, New York, 1970.
[17] M. A. Abdulsattar, “Self Consistent Field Calculations of Covalent Semiconductors,” Ph.D. Thesis, University of Baghdad, Baghdad, 1997.
[18] B. S. M. Baaee, “Theoretical Process to Study the Band Structure of Germanium Crystal by Use the Intermediate Neglect of Dif-ferential Overlap Method,” M.Sc. Thesis, University of Babylon, Babylon, 2003.
[19] I. O. R. Al-Jelawy, “Effect of Pressure and Temperature on Some Properties of Diamond Crystal Using Hartree-Fock Method,” M.Sc. thesis, University of Babylon, Babylon, 2005.
[20] M. M. Al-Hello, “Study of the Effect of Pressure on the Properties of Si-Crystal Using Semiempirical Method,” M. Sc. Thesis, University of Babylon, Babylon, 2004.
[21] A. H. Harker, and F. P. Larkins, “A Large Unit Cell Se- miempirical Molecular Orbital Approach to the Properties of Solids II. Covalent Materials: Diamond and Sili-con,” Journal of Physics C: Solid State Physics, Vol. 12, 1979, pp. 2497-2507. doi:10.1088/0022-3719/12/13/014
[22] M. G. Merdan, “Self-Consistent Field Calculations for the Effect of Pressure and Temperature on Some Properties of Grey Tin Crystal,” M.Sc. Thesis, University of Babylon, Babylon, 2005.
[23] S. Q. Wang and H. Q. Ye, “Plane-Wave Pseudopo-tential Study on Mechanical and Electronic Properties for IV and III-V Crystalline Phases with Zinc-Blende Structure,” Phy- sical Review B, Vol. 66, No. 23, 2002, pp. 235111- 235117. doi:10.1103/PhysRevB.66.235111
[24] S. H. Lee, J. H. Kang and M. H. Kang, “Structural Properties of Semiconductors in the Generalized Gradient Approximation,” Journal of the Ko-rean Physical Society, Vol. 31, No. 3, 1997, pp. 811-814.
[25] J. S. Blakemore, “Solid State Physics,” 2nd Edition, Cambridge University Press, Cambridge, 1985.
[26] J. Xie, S. P. Chen, J. S. Tse, S. de Gironcoli and S. Baroni, “High-Pressure Thermal Expansion, Bulk Modulus, and Pho-non Structure of Diamond,” Physical Review B, Vol. 60, No. 13, 1999, pp. 9444-9449. doi:10.1103/PhysRevB.60.9444
[27] C. Kittel, “Introduction to Solid State Physics,” 7th Edition, John Wiley and Sons, Ho-boken, 1996.
[28] A. Mujica, A. Rubio, A. Munoz and R. J. Need, “High Pressure Phaces of Group-IV, III-V, and II-VI Compounds,” Reviews of Modern Physics, Vol. 75, No. 3, 2003, pp. 863-907. doi:10.1103/RevModPhys.75.863
[29] B. Akdim, D. A. Papaconsttantopoulos and M. J. Mehl, “Tight-Binding Description of the Electronic Structure and Total Energy of Tin,” Philosophy Magazine B, Vol. 82, No. 1, 2002, pp. 47-61. doi:10.1080/13642810208211215
[30] C. A. Perottoni, A. S. Pereira, and J. A. H. da Jornada, “Periodic Hartree-Fock Linear Combination of Crystalline Orbitals Calculation of the Struc-ture, Equation of State and Elastic Properties of Titanium Diboride,” Journal of Physics: Condensed Matter, Vol. 12, No. 32, 2000, pp. 7205-7222. doi:10.1088/0953-8984/12/32/305
[31] J. Zheng, C. H. A. Haun, A. T. S. Wee, R. Wang and Y. Zheng, “Ground State Properties of Cubic C-BN Solid Solu-tions,” Journal of Physics: Condensed Matter, Vol. 11, No. 3, 1999, pp. 927-935. doi:10.1088/0953-8984/11/3/030
[32] T. Faisst, “Temperature Dependence of the Thermal Expansion Coefficient, Bulk Modulus and Magnetic Grueneisen Constant of Nickel Near the Curie Point,” Journal De Physique, Vol. 49, No. 12, 1988, pp. 65-66. doi:10.1051/jphyscol:1988819
[33] P. E. Van Camp, V. E.Van Doren, and J. T. Devreese, “Ground-State and Electronic Properties of Covalent Solids,” Physical Review, Vol. 38, No. 17, 1988, pp. 12675-12678. doi:10.1103/PhysRevB.38.12675
[34] S. Q. Wang, H. Q. Ye and S. Yip, “First Principles Studies on the Pressure Dependences of the Stress Strain Relationship and Elastic Stability of Semiconductors,” Phy- sics: Condensed Matter, Vol. 18, No. 2, 2006, pp. 395- 409. doi:10.1088/0953-8984/18/2/004
[35] C. Narayana, V. J. Nesamony, and A. L. Ruoff, “Phase Transfor-mation of BeS and Equation-Of-State Studies to 96 GPa,” Physical Review B, Vol. 56, No. 22, 1997, pp. 14338-14343.
[36] R. Asokamani and R. Rita, “Electronic Structure and Physical Properties of ABC2 (A = Zn, B = Si, Ge, Sn, and C = P, As) Ternary Penictide Semiconductors,” Physica Status Solidi B, Vol. 226, No. 2, 2001, pp. 375-384. doi:10.1002/1521-3951(200108)226:2<375::AID-PSSB375>3.0.CO;2-8
[37] W. Kim, M. Kim, Y. Chang, J. Shin and J. Bae, “Fatigue Crack Growth Behavior of NR and HNBR Based Vulcanizates with Potential Application to Track Pad for Heavy Weight Vehicles,” Macromolecular Research, Vol. 11, No. 2, 2003, pp. 73-79. doi:10.1007/BF03218333
[38] G. D. Raj, “Solid State Physics,” 1st Edition, Anmol Publication Pvt. Ltd, New Delhi, 2004.
[39] V. Kumar and B. S. R. Sastry, “Thermal Expansion Coef- ficient of Binary Semiconductors,” Crys-tal Research and Technology, Vol. 36, No. 6, 2001, pp. 565-569.
[40] J. P. Connerade, P. Kengkan, P. A. Lakshmi and R. Semaoune, “Scaling Laws for Atomic Compressibility,” Journal of Physics B: Atomic and Molecular Optical Physics, Vol. 33, No. 22, 2000, pp. L847-L854.
[41] S. M. Sze, “Semicon-ductor Devices: Physics and Technology,” Dar Al-Hikma, Mo-sul, 1990.
[42] J. Z. Jiang, H. Lindelov, L. Gerward, K. St?hl, J. M. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch and D. J. Frost, “Compressibility and Thermal Expansion of Cubic Silicon Nitride,” Physical Review B, Vol. 65, No. 16, 2002, pp. 161202-161205. doi:10.1103/PhysRevB.65.161202
[43] Y. Sun, S. E. Thompson and T. Nishida, “Physics of Strain Effects in Semiconduc-tors and Metal-Oxide-Semiconductor Field-Effect Transistors,” Journal of Applied Physics, Vol. 101, No. 10, 2007, pp. 104503-104522. doi:10.1063/1.2730561
[44] M. P. D’Evelyn and T. Taniguchi, “Elastic Properties of Translucent Polycrystalline Cubic Boron Nitride as Characterized by the Dynamic Resonance Method,” GE Research & Development Center, General Electric Com-pany, 1998.
[45] M. Mattesini and S. F. Matar, “First Principle Characteri- zation of New Ternary Heterodiamond BC2N Phases,” Computational Materials Science, Vol. 20, No. 2, 2001, pp. 107-119. doi:10.1016/S0927-0256(00)00132-4
[46] A. M. Pendás, A. Costales, M. A. Blanco, J. M. Recio and V. Luan?, “Local Compressibilities in Crystals,” Physical Review B, Vol. 62, No. 21, 2000, pp. 13970-13978. doi:10.1103/PhysRevB.62.13970
[47] A. M. Pendás, “Stress, Virial, and Pressure in the Theory of Atoms in Molecules,” Journal of Chemical Physics, Vol. 117, No. 3, 2002, pp. 965-979. doi:10.1063/1.1484385
[48] B. T. Wang, P. Zhang, H. L. Shi, B. Sun and W. D. Li, “Mechanical and Chemical Bonding Properties of Ground State BeH2,” The European Physical Journal B, Vol. 74, No. 3, 2010, pp. 303-308. doi:10.1140/epjb/e2010-00081-x
[49] G. E. Fernandez, S. A. Serebrinsky, J. L. Gervasoni and J. P. Abriata, “Calculation of the Pressure Dependence of the Bulk Modulus Using a Jelliumm Model,” International Journal of Hydrogen Energy, Vol. 29, 2004, pp. 93-95. doi:10.1016/S0360-3199(03)00050-8
[50] S. Barzilai, I. Halevy and O. Yeheskel, “Bulk Modulus of Sc2O3: Ab Initio Calculations and Experimental Results,” Journal of Applied Physics, Vol. 110, No. 4, 2011, pp. 043532. doi:10.1063/1.3626457
[51] B. Yu, D. Chen, Q. Tang, C. Wang and D. Shi, “Structural, Electronic, Elastic and Thermal Properties of Mg2Si,” Journal of Physics and Chemstry of Sollids, Vol. 71, No. 5, 2010, pp. 758-763. doi:10.1016/j.jpcs.2010.01.017
[52] L. C. M. Miranda and D. ter Haar, “Plasma Effects in Sound Amplification in Piezo-Electric Semiconductors,” Revista Brasileira de Física, Vol. 2, No. 2, 1972, pp. 77- 86.
[53] J. A. Sanjurjo, E. López-Cruz, P. Vogl and M. Cardona, “Dependence on Volume of the Phonon Frequencies and the IR Effective Charges of Several III-V Semiconductors,” Physical Review B, Vol. 28, No. 8, 1983, pp. 4579- 4584. doi:10.1103/PhysRevB.28.4579
[54] E. Burstein, S. Perkowitz and M. H. Brodsk, “The Dielectric Properties of the Cubic IV-VI Compound Semiconductors,’’ Journal De Physique, Vol. 29, No. 11-12, 1968, pp. 78-83. doi:10.1051/jphyscol:1968411
[55] K. Parliński, “First-Principles Calculations of Vibrational and Thermodynamical Properties of Solids,” Materials Science-Poland, Vol. 23, No. 2, 2005, pp. 357-363.
[56] T. Iitaka and T. Ebisuzaki, “First-Principles Calculation of Elastic Prop-erties of Solid Argon at High Pressures,” Riken Review, No. 48, 2001, pp. 12-15.
[57] J. Xie, S. de Gironcoli, S. Baroni and M. Scheffler, “First-Principles Calculation of the Thermal Proper-ties of Silver,” Physical Review B, Vol. 59, No. 2, 1999, pp. 965-969. doi:10.1103/PhysRevB.59.965
[58] C. Mali-nowska-Adamska, P. Sloma and J. Temaszewski, “Physical Properties of Ni fcc Lattice in Terms of the Self-Consistent Phonon Theory,” Journal of Physics: Condensed Matter, Vol. 18, No. 2, 2006, pp. 751-758. doi:10.1088/0953-8984/18/2/028
[59] J. Polit, E. M. Sheregii, J. Cebulski, B. V. Robouch, A. Marcelli, M. Cestelli Guidi, M. Piccinini, A. Kisiel, P. Zajdel, E. Burattini and A. Mycielski, “Phonon and Vibrational Spectra of Hydrogenated CdTe,” Journal of Applied Physics, Vol. 100, No. 1, 2006, pp. 013521. doi:10.1063/1.2211368

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.