Evaluation of Expression Stability of Candidate References Genes among Green and Yellow Pea Cultivars (Pisum sativum L.) Subjected to Abiotic and Biotic Stress


Dry pea (Pisum sativum L.) is grown as human and animal feed throughout the world. Large yield losses in pea due to biotic and abiotic stresses compel an improved understanding of mechanisms of stress tolerance and genetic determinants conditioning these tolerances. The availability of stably expressed reference genes is a prerequisite for examining differential gene expression. The objective of this study was to examine the expression profile of several candidate reference genes across a broad range of commercial pea cultivars. Expression profiles of five candidate reference genes; 18s rRNA, actin, TIF, β tubulin-2 and β tubulin-3 were examined. Relative quantifications of candidate reference genes were estimated from control plants, plants after 48 h of cold treatment, and plants 24 and 48 h after inoculation with Sclerotinia sclerotiorum, the causal agent of white mold disease of pea. RT-qPCR was performed on cDNA synthesized from three food grade spring peas, Ariel, Aragorn, and Sterling, and two spring yellow peas, Delta and Universal, which are used as animal feed. Analysis of variance (ANOVA) of CT values demonstrated significant variation between varieties and treatments under cold and disease conditions. The most abundant transcripts among tested reference genes were for 18s rRNA. Stability analysis indicated that TIF and β tubulin-3 genes were the most stably expressed candidate genes under both cold and disease stress and could serve as reference genes across a wide range of pea cultivars.

Share and Cite:

G. Saha and G. Vandemark, "Evaluation of Expression Stability of Candidate References Genes among Green and Yellow Pea Cultivars (Pisum sativum L.) Subjected to Abiotic and Biotic Stress," American Journal of Plant Sciences, Vol. 3 No. 2, 2012, pp. 235-242. doi: 10.4236/ajps.2012.32028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Bai and D. A. DeMason, “Hormone Interactions and Regulation of Unifoliata, PsPK2, PsPIN1 and LE Gene Expression in Pea (Pisum sativum) Shoot Tips,” Plant and Cell Physiology, Vol. 47, No.7, 2006, pp. 935-948. doi:10.1093/pcp/pcj066
[2] F. Bai, J. C. Watson, J. Walling, N. Weeden, A. A. Santner and D. A. DeMason, “Molecular Characterization and Expression of PsPK2, a PINOID-Like Gene from Pea (Pisum sativum),” Plant Science, Vol. 168, No. 5, 2005, pp. 1281-1291. doi:10.1016/j.plantsci.2005.01.005
[3] F. Cruz, S. Kalaoun, P. Nobile, C. Colombo, J. Almeida, L. M. G. Barros, E. Romano, M. F. Grossi-de-sa, M. Vaslin and M. Alves-Ferreira, “Evaluation of Coffee Reference Genes for Relative Expression Studies by Quantitative Real-time RT-PCR”, Molecular Breeding, Vol. 23, No. 4, 2009, pp. 607-616. doi:10.1007/s11032-009-9259-x
[4] T. Czechowski, M. Stitt, T. Altmann, M. K. Udvardi and W. R. Scheible, “Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis,” Plant Physiology, Vol. 139, No. 1, 2005, pp. 5-17. doi:10.1104/pp.105.063743
[5] K. Dheda, J. F. Huggett, J. S. Chang, L. U. Kim, S. A. Bustin, M. A. Johnson, G. A. W. Rook and A. Zumla, “The Implications of Using an Inappropriate Reference Gene for Real-time Reverse Transcription PCR Data Normalization,” Analytical Biochemistry, Vol. 344, No. 1, 2005, pp. 141-143. doi:10.1016/j.ab.2005.05.022
[6] J. V. Die, B. Roman, S. Nadal and C. I. Gonzalez-Verdejo, “Evaluation of Candidate Reference Genes for Expression Studies in Pisum sativum under Different Experimental Conditions,” Planta, Vol. 232, No. 1, 2010, pp. 145-153. doi:10.1007/s00425-010-1158-1
[7] J. E. Dombrowski and R. C. Martin, “Evaluation of Reference Genes for Quantitative RT-PCR in Lolium temulentum under Abiotic Stress,” Plant Science, Vol. 176, No. 3, 2009, pp. 390-396. doi:10.1016/j.plantsci.2008.12.005
[8] FAOSTAT, 2010. http://faostat.fao.org/
[9] S. Fondevilla, H. Küster, F. Krajinski, J. I. Cubero, D. Rubiales, “Identification of Genes Differentially Expressed in a Resistant Reaction to Mycosphaerella pinodes in Pea Using Microarray Technology,” BMC Genomics, Vol. 12, No. 28, 2011, pp. 1-15. doi:10.1186/1471-2164-12-28
[10] S. Goncalves, J. Cairney, J. Maroco, M. Margarida, Oliveira and C. Miguel, “Evaluation of Control Transcripts in Real-time RT-PCR Expression Analysis during Maritime Pine Embryogenesis,” Planta, Vol. 222, No. 3, 2005, pp. 556-563. doi:10.1007/s00425-005-1562-0
[11] S. Guénin, M. Mauriat, J. Pelloux, O. V. Wuytswinkel, C. Bellini and L. Gutierrez, “Normalization of qRT-PCR Data: The Necessity of Adopting a Systematic, Experimental Conditions-Specific, Validation of References,” Journal of Experimental Botany, Vol. 60, No. 2, 2009, pp. 487-493. doi:10.1093/jxb/ern305
[12] R. C. Martin, V. G. Hollenbeck, J. E. Dombrowski, “Evaluation of Reference Genes for Quantitative RT-PCR in Lolium perenne,” Crop Science, Vol. 48, No. 5, 2008, pp. 1881-1887. doi:10.2135/cropsci2007.10.0597
[13] N. Nicot, J.-F. Hausman, L. Hoffmann and D. Evers, “Housekeeping Gene Selection for Real-time RT-PCR Normalization in Potato during Biotic and Abiotic Stress,” Journal of Experimental Botany, Vol. 56, No. 421, 2005, pp. 2907-2914. doi:10.1093/jxb/eri285
[14] S. K. Panda and H. Matsumoto, “Changes in Antioxidant Gene Expression and Induction of Oxidative Stress in Pea (Pisum sativum L.) under Al Stress,” Biometals, Vol. 23, No.4, 2010, pp. 753-762. doi:10.1007/s10534-010-9342-0
[15] L. D. Porter, G. Hoheisel and V. A. Coffman, “Resistance of Peas to Sclerotinia sclerotiorum in the Pisum Core Collection”, Plant Pathology, Vol. 58, No. 1, 2009, pp. 52-60. doi:10.1111/j.1365-3059.2008.01937.x
[16] C. Ramakers, J. M. Ruijter, R. H. Deprez and A. F. Moorman, “Assumption-free Analysis of Quantitative Real-Time Polymerase Chain Reaction (PCR) Data,” Neuroscience Letters, Vol. 339, No. 1, 2003, pp. 62-66. doi:10.1016/S0304-3940(02)01423-4
[17] T. Remans, K. Smeets, K. Opdenakker, D. Mathijsen, J. Vangronsveld and A. Cuypers, “Normalisation of Real-Time RT-PCR Gene Expression Measurements in Arabidopsis thaliana Exposed to Increased Metal Concentrations,” Planta, Vol. 227, No. 6, 2008, pp. 1343-1349. doi:10.1007/s00425-008-0706-4
[18] J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman, “Accurate Normalization of Real-time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes,” Genome Biology, Vol. 3, No. 7, 2002, pp. 1-12. doi:10.1186/gb-2002-3-7-research0034
[19] M. L. Wong and J. F. Medrano, “Real-Time PCR for mRNA Quantitation,” Biotechniques, Vol. 39, No. 1, 2005, pp. 75-85.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.