Room Temperature Synthesis of Aminocaproic Acid-Capped Lead Sulphide Nanoparticles
Jayesh D. Patel, Frej Mighri, Abdellah Ajji, Saïd Elkoun
.
DOI: 10.4236/msa.2012.32020   PDF    HTML   XML   6,954 Downloads   12,106 Views   Citations

Abstract

Aminocaproic acid (ACA) mixed methanolic lead acetate-thiourea (PbAc-TU) complex as precursor for fabrication of lead sulphide (PbS) nanoparticles (NPs) has been explained. The size, structure and morphology of as-prepared ACA-capped PbS NPs were systematically characterized by scanning electron microscopy (SEM), Transmission electron mi-croscopy (TEM), X-ray diffraction (XRD), Uv-vis spectroscopy and Brunauer-Emmett-Teller (BET) techniques. The obtained results show that the synthesized PbS NPs are nanocrystalline, size quantized and their agglomeration shows a mesoporous network of 8.7 nm in pore size. The binding nature of ACA molecules on PbS surface was studied by thermo gravimetric analysis (TGA), Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) techniques. Results indicate that ACA acts as a soft template that restricts the growth of PbS NPs through its binding to Pb surface via nitrogen lone pair.

Share and Cite:

J. Patel, F. Mighri, A. Ajji and S. Elkoun, "Room Temperature Synthesis of Aminocaproic Acid-Capped Lead Sulphide Nanoparticles," Materials Sciences and Applications, Vol. 3 No. 2, 2012, pp. 125-130. doi: 10.4236/msa.2012.32020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” Journal of American Chemical Society, Vol. 115, No. 19, 1993, pp. 8706-8715. doi:10.1021/ja00072a025
[2] D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang and A. P. Alivisatos, “Colloidal Nanocrystal Heterostructures with Linear and Branched Topology,” Nature, Vol. 430, No. 6966, 2004, pp. 190-195. doi:10.1038/nature02695
[3] T.-W. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr and E. H. Sargent, “Efficient Excitation Transfer from Polymer to Nanocrystals,” Applied Physics Letters, Vol. 84, No. 21, 2004, pp. 4295-4297. doi:10.1063/1.1755414
[4] W. C. W. Chan and N. Shuming, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science, Vol. 281, No. 5385, 1998, pp. 2016-2018. doi:10.1126/science.281.5385.2016
[5] Y. Wang, A. Suna, W. Mahler and R. Kasowski, “PbS in Polymers. From Molecules to Bulk Solids,” Journal of Chemical Physics, Vol. 87, No. 12, 1987, pp. 7315-7322. doi:10.1063/1.453325
[6] A. A. R. Watt, D. Blake, J. H. Warner, E. H. Thomsen, E. L. Tavenner, H. Rubinsztein-Dunlop and P. Meredith, “Lead Sulfide Nanocrystal: Conducting Polymer Solar Cells,” Journal of Physics D: Applied Physics, Vol. 38, No. 12, 2005, pp. 2006-2012. doi:10.1088/0022-3727/38/12/023
[7] A. Guchhait, A. K. Rath and A. J. Pal, “To Make Polymer: Quantum Dot Hybrid Solar Cells NIR-Active by Increasing Diameter of PbS Nanoparticles,” Solar Energy Materials and Solar Cells, Vol. 95, No. 2, 2011, pp. 651-656. doi:10.1016/j.solmat.2010.09.034
[8] S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, “SolutionProcessed PbS Quantum Dot Infrared Photo-Detectors and Photo-Voltaics,” Nature Materilas, Vol. 4, No. 2, 2005, pp. 138-142. doi:10.1038/nmat1299
[9] P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty and G. E. Jabbour, “PbS Quantum-Dot Doped Glasses as Saturable Absorbers for Mode Locking of a Cr:Forsterite Laser,” Applied Physics Letters, Vol. 71, No. 12, 1997, pp. 1595-1597. doi:10.1063/1.119843
[10] Z. H. Zhang, S. H. Lee, J. J. Vittal and W. S. Chin, “A Simple Way to Prepare PbS Nanocrystals with Morphology Tuning at Room Temperature,” Journal of Physical Chemistry B, Vol. 110, No. 13, 2006, pp. 6649-6654. doi:10.1021/jp057271m
[11] D. Berhanu, K. Govender, D. Smyth-Boyle, M. Archbold, D. P. Halliday and P. O’Brien, “A Novel Soft Hydrothermal (SHY) Route to Crystalline PbS and CdS Nanoparticles Exhibiting Diverse Morphologies,” Chemical Communications, Vol. 45, No. 45, 2006, pp. 4709-4711. doi:10.1039/b612934j
[12] E. Leontidis, M. Orphanou, T. Kyprianidou-Leodidou, F. Krumeich and C. Walter, “Composite Nanotubes Formed by Self-Assembly of PbS Nanoparticles,” Nano Letters, Vol. 3, No. 4, 2003, pp. 569-572. doi:10.1021/nl034124w
[13] K. Singh, A. A. McLachlan and D. Gerrard Marangoni, “Effect of Morphology and Concentration on Capping Ability of Surfactant in Shape Controlled Synthesis of PbS Nano- and Micro-Crystals,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 345, No. 1-3, 2009, pp. 82-87. doi:10.1016/j.colsurfa.2009.04.033
[14] Z. Zhao, K. Zhang, J. Zhang, K. Yang, C. He, F. Dong and B. Yang, “Synthesis of Size and Shape Controlled PbS Nanocrystals and Their Self-Assembly,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 355, No. 1-3, 2010, pp. 114-120. doi:10.1016/j.colsurfa.2009.12.009
[15] N. B. Pendyala and K. S. R. Koteswara Rao, “Temperature and Capping Dependence of NIR Emission from PbS Nano-Microcrystallites with Different Morphologies,” Materials Chemistry and Physics, Vol. 113, No. 1, 2009, pp. 456-461. doi:10.1016/j.matchemphys.2008.07.125
[16] G. Li, C. Li, H. Tang, K. Cao and J. Chen, “Controlled Self-Assembly of PbS Nanoparticles into Macrostar-Like Hierarchical Structures,” Materials Research Bulletin, Vol. 46, No. 7, 2011, pp. 1072-1079. doi:10.1016/j.materresbull.2011.03.006
[17] S. Z. Liu, S. L. Xiong, K. Y. Bao, J. Cao and Y. T. Qian, “Shape-Controlled Preparation of PbS with Various Dendritic Hierarchical Structures with the Assistance of l-Methionine,” Journal of Physical Chemistry C, Vol. 113, No. 30, 2009, pp. 13002-13007. doi:10.1021/jp8104437
[18] T. Thongtem, S. Kaowphong and S. Thongtem, “Biomolecule and Surfactant-Assisted Hydrothermal Synthesis of PbS Crystals,” Ceramics International, Vol. 34, No. 7, 2008, pp. 1691-1695. doi:10.1016/j.ceramint.2007.05.007
[19] Z. Fan, S. Yan, B. Zhang, Y. Zhao and Y. Xie, “L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-Like Hierarchical Architectures,” Journal of Physical Chemistry C, Vol. 112, No. 8, 2008, pp. 2831-2835. doi:10.1021/jp0766149
[20] X. Shen, Z. Li, Y. Cui and Y. Pang, “Glutathione-Assisted Synthesis of Hierarchical PbS via Hydrothermal Degradation and Its Application in the Pesticidal Biosensing,” International Journal of Electrochemical Scien- ce, Vol. 6, No. 8, 2011, pp. 3525-3535.
[21] T. D. Nguyen, D. Mrabet, T. T. D. Vu, C. T. Dinh and T. O. Do, “Biomolecule-Assisted Route for Shape-Controlled Synthesis of Single-Crystalline MnWO4 Nanoparticles and Spontaneous Assembly of Polypeptide-Stabilized Mesocrystal Microspheres,” CrystEngComm, Vol. 13, No. 5, 2011, pp. 1450-1460. doi:10.1039/c0ce00091d
[22] T. Chaudhuri, N. Saha and P. Saha, “Deposition of PbS Particles from a Nonaqueous Chemical Bath at Room Temperature,” Materials Letters, Vol. 59, No. 17, 2005, pp. 2191-2193. doi:10.1016/j.matlet.2005.02.064
[23] Y. Zhao, X.-H. Liao, J.-M. Hong and J.-J. Zhu, “Synthesis of Lead Sulfide Nanocrystals via Microwave and Sonochemical Methods,” Materials Chemistry and Physics, Vol. 87, No. 1, 2004, pp. 149-153. doi:10.1016/j.matchemphys.2004.05.026
[24] G. E. Muilenberg, C. D. Wager, W. M. Riggs, L. E. Devis and J. F. Moulder, “Handbook of X-Ray Photoelectron Spectroscopy,” Perking-Elmer, New York, 1979.
[25] Z. Deng, B. Peng, D. Chen, F. Tang and A. Muscat, “A New Route to Self-Assembled Tin Dioxide Nanospheres: Fabrication and Characterization,” Langmuir, Vol. 24, No. 19, 2008, pp. 11089-11095. doi:10.1021/la800984g

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.