Association of CYP2B6 Genotype with Survival and Progression Free Survival in Cyclophosphamide Treated Multiple Myeloma

DOI: 10.4236/jct.2012.31003   PDF   HTML     4,033 Downloads   7,234 Views   Citations

Abstract

Objective: Cyclophosphamide is a conventional pro-drug used in Multiple Myeloma (MM) and other malignancies. The highly polymorphic CYP2B6 is suggested as a major contributor in cyclophosphamide bioactivation, and GST enzymes are involved in detoxification. Polymorphisms of these enzymes may affect enzyme expression and function as well as treatment outcome. The aim of this study was to investigate the impact of the CYP2B6 SNPs G516T, A785G and C1459T, GSTP1 SNP Ile105Val, and GSTM1 and GSTT1 null variants, on the outcome for cyclophosphamide treated MM patients, in order to find markers of value for individualised therapy. Methods: We used allele specific PCR and Pyrosequencing to investigate the impact of CYP2B6 SNPs G516T, A785G and C1459T, GSTP1 Ile105Val, and GSTM1 and GSTT1 variants, on the outcome for 26 cyclophosphamide treated multiple myeloma patients. Results and Major Conclusion: The CYP2B6 785G carriers had significantly shorter progression free survival (p = 0.048*) and overall survival (p = 0.037*) with 785G/G patients having the worst outcome compared to patients carrying the wild type. A shorter progression free survival was also indicated in patients carrying both CYP2B6 516T & 785G (p = 0.068). These results indicate a predictive role of CYP2B6 SNPs, particularly A785G, in cyclophosphamide treatment.

Share and Cite:

I. Falk, M. Khan, L. Thunell, H. Nahi and H. Gréen, "Association of CYP2B6 Genotype with Survival and Progression Free Survival in Cyclophosphamide Treated Multiple Myeloma," Journal of Cancer Therapy, Vol. 3 No. 1, 2012, pp. 20-27. doi: 10.4236/jct.2012.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. M. Kuehl and P. L. Bergsagel, “Multiple Myeloma: Evolving Genetic Events and Host Interactions,” Nature Reviews Cancer, Vol. 2, No. 3, 2002, pp. 175-187. doi:10.1038/nrc746
[2] M. C. Minnema, E. van der Spek, N. W. C. J van de Donk and H. M. Lokhorst, “New Developments in the Treatment of Patients with Multiple Myeloma,” The Netherlands Journal of Medicine, Vol. 68, No. 1, 2010, pp. 24-32.
[3] H. Kaufman, E. Urbauer, J. Ackermann, H. Huber and J. Drach, “Advances in the Biology and Therapeutic Management of Multiple Myeloma,” Annals of Hematology, Vol. 80, No. 8, 2001, pp. 445-451. doi:10.1007/s002770100348
[4] T. K. H. Chang, G. F. Weber, C. L. Crespi and D. J. Waxman, “Differential Activation of Cyclophosphamide and Ifosphamide by Cytochromes P-450 2B and 3A in Human Liver Microsomes,” Cancer Research, Vol. 53, No. 23, 1993, pp. 5629-5637.
[5] T. Lang, K. Klein, J. Fischer, A. K. Nussler, P. Neuhaus, U. Hofmann, et al., “Extensive Genetic Polymorphism in the Human CYP2B6 Gene with Impact on Expression and Function in Human Liver,” Pharmacogenetics, Vol. 11, No. 7, 2001, pp. 399-415. doi:10.1097/00008571-200107000-00004
[6] J. Kirchheiner, C. Klein, I. Meineke, J. Sasse, U. M. Zanger, T. E. Murdter, et al., ”Bupropion and 4-OH-bupropion Pharmacokinetics in Relation to Genetic Polymorphisms in CYP2B6,” Pharmacogenetics, Vol. 13, No. 10, 2003, pp. 619-626. doi:10.1097/00008571-200310000-00005
[7] K. Tsuchiya, H. Gatanaga, N. Tachikawa, K. Teruya, Y. Kikuchi, M. Yoshino, et al., “Homozygous CYP2B6 *6 (Q172H and K262R) correlates with High Plasma Efavirenz Concentrations in HIV-1 Patients Treated with Standard Efavirenz-Containing Regimens,” Biochemical and Biophysical Research Communications, Vol. 319, No. 4, 2004, pp. 1322-1326. doi:10.1016/j.bbrc.2004.05.116
[8] M. Nakajima, S. Komagata, Y. Fujiki, Y. Kanada, H. Ebi, K. Itoh, et al., “Genetic Polymorphisms of CYP2B6 Affect the Pharmacokinetics/Pharmacodynamics of Cyclophosphamide in Japanese Cancer Patients,” Pharmacogenetics and Genomics, Vol. 17, No. 6, 2007, pp. 431-445. doi:10.1097/FPC.0b013e328045c4fb
[9] M. H. Hofmann, J. K. Blievernicht, K. Klein, T. Saussele, E. Schaeffeler, M. Schwab, et al., “Aberrant Splicing Caused by Single Nucleotide Polymorphism c.516G>T (Q172H), a Marker of CYP2B6*6, Is Responsible for Decreased Expression and Activity of CYP2B6 in Liver,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 325, No. 1, 2008, pp. 284-292. doi:10.1124/jpet.107.133306
[10] J. Seidegard, W. R. Vorachek, R. W. Pero and W. R. Pearson, “Hereditary Differences in the Expression of the Human Glutathione Transferase active on Trans-Stilbene Oxide Are Due to a Gene Deletion,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 85, No. 19, 1988, pp. 7293-7297. doi:10.1073/pnas.85.19.7293
[11] S. Pemble, R. Klaus, K. R. Schroeder, S. R. Spencer, D. J. Meyer, E. Hallier, et al., “Human Glutathione S-Transferase Theta (GSTT1): cDNA Cloning and the Characterization of a Genetic Polymorphism,” The Biochemical Journal, Vol. 300, No. 1, 1994, pp. 271-276.
[12] D. A. Bell, J. A. Taylor, D. F. Paulson, C. N. Robertson, J. L. Mohler and G. W. Lucier, “Genetic Risk and Carcinogen Exposure: A Common Defect of the Carcinogen-Metabolism Gene Glutathione S-Transferase M1 (GSTM1) That Increases Susceptibility to Bladder Cancer,” Journal of the National Cancer Institute, Vol. 85, No. 14, 1993, pp. 1159-1164. doi:10.1093/jnci/85.14.1159
[13] A. Ahmadi, P. Jonsson, U. Flodin and P .Soderkvist, ”Interaction between Smoking and Glutathione S-Transferase Polymorphisms in Solvent-Induced Chronic Toxic Encephalopathy,” Toxicology and Industrial Health, Vol. 18, No. 6, 2002, pp. 289-296. doi:10.1191/0748233702th152oa
[14] T. M. Ishimoto and F. Ali-Osman, “Allelic Variants of the Human Glutathione S-Transferase P1 Gene Confer Differential Cytoprotection against Anticancer Agents in Escherichia coli,” Pharmacogenetics, Vol. 12, No. 7, 2002, pp. 543-553. doi:10.1097/00008571-200210000-00006
[15] A.-S. Johansson, G. Stenberg, M. Widersten and B. Mannervik, “Structure-Activity Relationships and Thermal Stability of Human Glutathione Transferase P1-1 Governed by the H-Site Residue 105,” Journal of Molecular Biology, Vol. 278, No. 3, 1998, pp. 687-698. doi:10.1006/jmbi.1998.1708
[16] M. Rohrbacher, A. Kirchhof, G. Geisslinger and J. Lotsch, “PyrosequencingTMBased Screening for Genetic Polymorphisms in Cytochrome P450 2B6 of Potential Clinical Relevance,” Pharmacogenomics, Vol. 7, No. 7, 2006, pp. 995-1002. doi:10.2217/14622416.7.7.995
[17] J. Bray, J. Sludden, M. J. Griffin, M. Cole, M. Verril, D. Jamieson, et al., “Influence of Pharmacogenetics on Response and Toxicity in Breast Cancer Patients Treated with Doxorubicin and Cyclophosphamide,” British Journal of Cancer, Vol. 102, No. 6, 2010, pp. 1003-1009. doi:10.1038/sj.bjc.6605587
[18] N. A. Hesby, C.-Y. Hui, M. A. Goldthorpe, J. K. Colle, M. C. Soh, P. J. Gow, et al., “The Combined Impact of CYP2C19 and CYP2B6 Pharmacogenetics on Cyclophosphamide Bioactivation,” British Journal of Clinical Pharmacology, Vol. 70, No. 6, pp. 844-853. doi:10.1111/j.1365-2125.2010.03789.x
[19] H. Xie, L. Griskevicius, L. Stahle, Z. Hassan, U. Yasara, A. Rane, et al., “Pharmacogenetics of Cyclophosphamide in Patients with Hematological Malignancies,” European Journal of Pharmaceutical Sciences, Vol. 27, No. 1, 2006, pp. 54-61.
[20] H. Avet-Loiseau, M. Attal, P. Moreau, C. Charbonnel, F. Garban, C. Hulin, et al., “Genetic Abnormalities and Survival in Multiple Myeloma: The Experience of the Intergroupe Francophone du Myelome,” Blood, Vol. 109, No. 8, 2007, pp. 3489-3495. doi:10.1182/blood-2006-08-040410
[21] R. K. Dasgupta, P. J. Adamson, F. E. Davies, S. Rollinson, P. L. Roddam, A. J. Ashcroft, et al., “Polymorphic Variation in GSTP1 Modulates Outcome Following Therapy for Multiple Myeloma,” Blood, Vol. 102, No. 7, 2003, pp. 2345-2350. doi:10.1182/blood-2003-02-0444
[22] C. Sweeney, G. Y. McClure, M. Y. Fares, A. Stone, B. F. Coles, P. A. Thompson, et al., “Association between Survival after Treatment for Breast Cancer and Glutathione S-Transferase P1 Ile105Val Polymorphism,” Cancer Research, Vol. 60, No. 20, 2000, pp. 5621-5624.
[23] A. Beeghly, D. Katsaros, H. Chen, S. Fracchioli, Y. Zhang, M. Massobrio, et al., “Glutathione S-Transferase Polymorphisms and Ovarian Cancer Treatment and Survival,” Gynecologic Oncology, Vol. 100, No. 2, 2006, pp. 330-337. doi:10.1016/j.ygyno.2005.08.035
[24] A. V. Khrunin, A. Moisseev, V. Gorbunova and S. Limborska, “Genetic Polymorphisms and the Efficacy and Toxicity of Cisplatin-Based Chemotherapy in Ovarian Cancer Patients,” Pharmacogenomics Journal, Vol. 10, No. 1, 2010, pp. 54-61. doi:10.1038/tpj.2009.45
[25] V. Maggini, G. Buda, S. Galimberti, E. Conidi, N. Giuliani, F. Morabito, et al., “Response to Chemotherapy and Tandem Autologous Transplantation of Multiple Myeloma Patients and GSTP1 and TYMS Polymorphisms,” Leukemia Research, Vol. 32, No. 1, 2008, pp. 49-53. doi:10.1016/j.leukres.2007.03.029

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.