Structural, Thermal and Electrical Property of Polycrystalline LaLiMo2O8


This research article reports electrical characterization of a rare earth molybdate based on combination of rare earth (La+3) and alkali (Li+) metal ions. The experimental observation suggests the negative temperature coefficient of resistance behavior of the material. The material has been prepared by standard solid state reaction method, where the synthesis conditions have been optimized by thermal analysis. A possible mechanism for the formation of the polycrystal-line LaLiMo2O8 is reported. A systematic analysis has been done to determine the crystal structure of the powder material and it was found that the powder material was crystallized to tetragonal unit cell structure. Electrical properties have been studied using a.c. impedance measurement. The temperature variation of electrical conductivity of the material shows typical Arrhenius behavior. The activation energy evaluated from conductivity data works out to be ~0.94 ev.

Share and Cite:

S. Brahma, R. Choudhary, A. Thakur and S. Shivashankar, "Structural, Thermal and Electrical Property of Polycrystalline LaLiMo2O8," New Journal of Glass and Ceramics, Vol. 2 No. 1, 2012, pp. 7-12. doi: 10.4236/njgc.2012.21002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. J. Borchardt and P. E. Bierstedt, “Gd2(MoO4)3: A Fer- roe-lectric Laser Host,” Applied Physics Letters, Vol. 8, No. 2, 1966, pp. 50-52. doi:10.1063/1.1754477
[2] J. Huang, J. Loriers and P. Porcher, “Spectroscopic Properties of Ln2MoO6: Eu3+,” Journal of Solid State Chemistry, Vol. 43, No. 1, 1982, pp. 87-96. doi:10.1016/0022-4596(82)90218-3
[3] G. Blasse and A. Bril, “On the Eu3+ Flurescence in Mixed Metal Oxides III. Energy Transfer in Eu3+-Activated Tungstates and Molybdates of the Type Ln2WO6 and Ln2MoO6,” Journal of Chemical Physics, Vol. 45, No. 7, 1966, pp. 2350-2355. doi:10.1063/1.1727945
[4] F. Dubois, F. Goutenoire, Y. Laligant, E. Suard and P. Lacorre, “Ab-Initio Determination of La2Mo4O15 Crystal Structure from X-Rays and Neutron Powder Diffraction,” Journal of Solid State Chemistry, Vol. 159, No. 1, 2001, pp. 228-233. doi:10.1006/jssc.2001.9190
[5] R. Subasri, D. Matusch, H. N?fe and F. Aldinger, “Synthesis and Characterization of (La1-xMx)2Mo2O9-δ; M = Ca2+, Sr2+ or Ba2+,” Journal of the European Ceramic Society, Vol. 24, No. 1, 2004, pp. 129-137. doi:10.1016/S0955-2219(03)00123-7
[6] H. Naruke and T. Yamase, “Structural Investigation of R2Mo4O15 (R = La, Nd, Sm), and Polymorphs of the R2Mo4O15 (R = Rare Earth) Family,” Journal of Solid State Chemistry, Vol. 173, No. 2, 2003, pp. 407-417. doi:10.1016/S0022-4596(03)00131-2
[7] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux and Y. Laligant, “Designing Fast Oxide-Ion Conductors Based on La2Mo2O9,” Nature, Vol. 404, No. 6780, 2000, pp. 856-858. doi:10.1038/35009069
[8] V. S. Grunin and I. B. Patrina, “Impurities and Charge Compensation in Some Molybdenium Oxides,” Physica Status Solidi B, Vol. 123, No. 1, 1984, pp. 353-363. doi:10.1002/pssb.2221230138
[9] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogra-phica Section A, Vol. 32, Part 5, 1976, pp. 751-767. doi:10.1107/S0567739476001551
[10] T. Gnanasekaran, K. H. Mahendran, K. V. G. Kutty and C. K. Mathews, “Phase Dia-gram Studies on the Na-Mo-O System,” Journal of Nuclear Materials, Vol. 165, No. 3, 1989, pp. 210-216. doi:10.1016/0022-3115(89)90197-9
[11] T. Mathews, D. Krishnamurty and T. Gnanasekaran, “An Electrochemical In-vestigation of the Thermodynamic Properties of Na2Mo2O7 and Na2NiO2,” Journal of Nuclear Materials, Vol. 247, 1997, pp. 280-284. doi:10.1016/S0022-3115(97)00075-5
[12] S. N. Choudhary and R. N. P. Choudhary, “Phase Transitions in NaLiWO4 Ce-ramics,” Materials Letters, Vol. 34, No. 3-6, 1998, pp. 411-414. doi:10.1016/S0167-577X(97)00203-6
[13] S. Takenaka, T. Tanaka, T. Funabiki and S. Yoshida, “Structures of Molybde-num Species in Silica-Supported Molybdenum Oxide and Al-kali-Ion-Modified Silica-Sup- ported Molybdenum Oxide,” Journal of Physical Chemistry B, Vol. 102, No. 16, 1998, pp. 2960-2969. doi:10.1021/jp980134n
[14] T. Nagasaki, S. Inui and T. Matsui, “Phase Relation in Li2MoO4-Li2WO4 System,” Thermochimica Acta, Vol. 352- 353, 2000, pp. 81-85. doi:10.1016/S0040-6031(99)00441-4
[15] S. Chatterjee, P. K. Mahapatra, R. N. P. Choudhary and A. K. Thakur, “Complex Impedance Studies of Sodium Pyrotungstate—Na2W2O7,” Phy-sica Status Solidi A, Vol. 201, No. 3, 2004 pp. 588-595. doi:10.1002/pssa.200306741
[16] H. A. Harwig and A. G. Gerards, “Electrical Properties of the α, β, γ, and δ Phases of Bismuth Sesquioxide,” Journal of Solid State Chemistry, Vol. 26, No. 3, 1978, pp. 265-274. doi:10.1016/0022-4596(78)90161-5
[17] T. Ishihara, H. Mat-suda and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” Journal of the American Chemical Society, Vol. 116, No. 9, 1994, pp. 3801-3803. doi:10.1021/ja00088a016
[18] F. Abraham, M. F. De-breuille-Gresse, G. Mairesse and G. Nowogrocki, “Phase Tran-sitions and Ionic Conductivity in Bi4V2O11 an Oxide with a Layered Structure,” Solid State Ionics, Vol. 28-30, Part 1, 1988, pp. 529-532. doi:10.1016/S0167-2738(88)80096-1
[19] S. A. Kramer and H. L. Tuller, “A Novel Titanate-Based Oxygen Ion Conductor: Gd2Ti2O7,” Solid State Ionics, Vol. 82, No. 1-2, 1995, pp. 15-23. doi:10.1016/0167-2738(95)00156-Z
[20] B. C. H. Steele, “Oxygen Ion Conductors,” In: T. Takahashi, Ed., Recent Trends and Applications, World Scientific Publishing Co., Singapore, 1989, p. 402.
[21] J. C. Boivin and G. Mairesse, “Recent Material Developments in Fast Oxide Ion Conductors,” Chemistry of Materials, Vol. 10, No. 10, 1998, pp. 2870-2888. doi:10.1021/cm980236q
[22] Y. Zhang, S. Kuai, Z. Wang and X. Hu, “Preparation and Electrochromic Properties of Li-Doped MoO3 Films Fabricated by the Peroxo Sol-Gel Process,” Ap-plied Surface Science, Vol. 165, No. 1, 2000, pp. 56-59. doi:10.1016/S0169-4332(00)00369-X
[23] JCPDS No-00-018-0734.
[24] JCPDS No-00-026-0850.
[25] JCPDS No-01-070-1728.
[26] V. G. Kessler, A. N. Panov, N. Y. Turova and A. Y. Bo- rissevitch, “Solution Stoichiometry Control for Pure Li- LaMo2O8 Phases in Sol-Gel Preparation,” Journal of Sol- Gel Science and Technology, Vol. 8, No. 1-3, 1997, pp. 1049-1051. doi:10.1023/A:1018386308334
[27] N. F. Mott, “Metal Insulator Transition,” Taylor and Fran- cis, London, 1990.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.