Particle Characteristics and Metal Release From Natural Rutile (TiO2) and Zircon Particles in Synthetic Body Fluids


Titanium oxide (rutile, TiO2) and zircon (ZrSiO4), known insoluble ceramic materials, are commonly used for coatings of implant materials. We investigate the release of zirconium, titanium, aluminum, iron, and silicon from different micron-sized powders of 6 powders of natural rutile (TiO2) and zircon (ZrSiO4) from a surface perspective. The investigation includes five different synthetic body fluids and two time periods of exposure, 2 and 24 hours. The solution chemicals rather than pH are important for the release of zirconium. When exceeding a critical amount of aluminum and silicon in the surface oxide, the particles seem to be protected from selective pH-specific release at neutral or weakly alkaline pH. The importance of bulk and surface composition and individual changes between different kinds of the same material is elucidated. Changes in material properties and metal release characteristics with particle size are presented for zircon.

Share and Cite:

Y. Hedberg, J. Hedberg and I. Wallinder, "Particle Characteristics and Metal Release From Natural Rutile (TiO2) and Zircon Particles in Synthetic Body Fluids," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 37-49. doi: 10.4236/jbnb.2012.31006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Kumazawa, F. Watari, N. Takashi, Y. Tanimura and M. Uo, Y. Totsuka, “Effects of Ti Ions and Particles on Neutrophil Function and Morphology,” Biomaterials, Vol. 23, No. 17, 2002, pp. 3757-3764. doi:10.1016/S0142-9612(02)00115-1
[2] J. Li, “Behaviour of Titanium and Titania-Based Ceramics in Vitro and in Vivo,” Biomaterials, Vol. 14, No. 3, 1993, pp. 229-232. doi:10.1016/0142-9612(93)90028-Z
[3] S. Snall and T. Liljefors, “Leachability of Major Elements from Minerals in Strong Acids,” Journal of Geochemical Exploration, Vol. 71, No. 1, 2000, pp. 1-12. doi:10.1016/S0375-6742(00)00139-4
[4] M. P. Tole, “The Kinetics of Dissolution of Zircon (ZrSiO4),” Geochimica et Cosmochimica Acta, Vol. 49, No. 2, 1985, pp. 453-458. doi:10.1016/0016-7037(85)90036-5
[5] A. Wisbey, P. J. Gregson, L. M. Peter and M. Tuke, “Effect of Surface Treatment on the Dissolution of Titanium-Based Implant Materials,” Biomaterials, Vol. 12, No. 5, 1991, pp. 470-473. doi:10.1016/0142-9612(91)90144-Y
[6] G. Vallés, P. González-Melendi, J. L. González-Carrasco, L. Saldana, E. Sánchez-Sabaté, L. Munuera and N. Vilaboa, “Differential Inflammatory Macrophage Response to Rutile and Titanium Particles,” Biomaterials, Vol. 27, No. 30, 2006, pp. 5199-5211. doi:10.1016/j.biomaterials.2006.05.045
[7] T. J. Brunner, P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink and W .J. Stark, “In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility,” Environmental Science & Technology, Vol. 40, No. 14, 2006, pp. 4374-4381. doi:10.1021/es052069i
[8] A. Yamamoto, R. Honma, M. Sumita and T. Hanawa, “Cytotoxicity Evaluation of Ceramic Particles of Different Sizes and Shapes,” Journal of Biomedical Materials Research Part A, Vol. 68A, No. 2, 2004, pp. 244-256. doi:10.1002/jbm.a.20020
[9] Y. Duan, J. Liu, L. Ma, N. Li, H. Liu, J. Wang, L. Zheng, C. Liu, X. Wang, X. Zhao, J. Yan, S. Wang, H. Wang, X. Zhang and F. Hong, “Toxicological Characteristics of Nanoparticulate Anatase Titanium Dioxide in Mice,” Biomaterials, Vol. 31, No. 5, 2010, pp. 894-899. doi:10.1016/j.biomaterials.2009.10.003
[10] R. Hu, X. Gong, Y. Duan, N. Li, Y. Che, Y. Cui, M. Zhou, C. Liu, H. Wang and F. Hong, “Neurotoxicological Effects and the Impairment of Spatial Recognition Memory in Mice Caused by Exposure to TiO2 Nanoparticles,” Biomaterials, Vol. 31, No. 31, 2010, pp. 8043-8050. doi:10.1016/j.biomaterials.2010.07.011
[11] L. Ma, J. Liu, N. Li, J. Wang, Y. Duan, J. Yan, H. Liu, H. Wang and F. Hong, “Oxidative Stress in the Brain of Mice Caused by Translocated Nanoparticulate TiO2 Delivered to the Abdominal Cavity,” Biomaterials, Vol. 31, No. 1, 2010, pp. 99-105. doi:10.1016/j.biomaterials.2009.09.028
[12] H. L. Karlsson, J. Gustafsson, P. Cronholm and L. Moller, “Size-Dependent Toxicity of Metal Oxide Particles—A Comparison between Nano- and Micrometer Size,” Toxicology Letters, Vol. 188, No. 2, 2009, pp. 112-118. doi:10.1016/j.toxlet.2009.03.014
[13] D. B. Warheit, T. R. Webb, C. M. Sayes, V. L. Colvin and K. L. Reed, “Pulmonary Instillation Studies with Nanoscale TiO2 Rods and Dots in Rats: Toxicity Is Not Dependent upon Particle Size and Surface Area,” Toxicological Sciences, Vol. 91, No. 1, 2006, pp. 227-236. doi:10.1093/toxsci/kfj140
[14] C. M. Sayes, R. Wahi, P. A. Kurian, Y. Liu, J. L. West, K. D. Ausman, D. B. Warheit and V. L. Colvin, “Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells,” Toxicological Sciences, Vol. 92, No. 1, 2006, pp. 174-185. doi:10.1093/toxsci/kfj197
[15] J.-R. Gurr, A. S. S. Wang, C.-H. Chen and K.-Y. Jan, “Ultrafine Titanium Dioxide Particles in the Absence of Photoactivation Can Induce Oxidative Damage to Human Bronchial Epithelial Cells,” Toxicology, Vol. 213, No. 1-2, 2005, pp. 66-73. doi:10.1016/j.tox.2005.05.007
[16] J.-X. Wang, Y.-B. Fan, Y. Gao, Q.-H. Hu and T.-C. Wang, “TiO2 Nanoparticles Translocation and Potential Toxicological Effect in Rats after Intraarticular Injection,” Biomaterials, Vol. 30, No. 27, 2009, pp. 4590-4600. doi:10.1016/j.biomaterials.2009.05.008
[17] S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss and J. J. Schlager, “In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells,” Toxicology in Vitro, Vol. 19, No. 7, 2005, pp. 975-983. doi:10.1016/j.tiv.2005.06.034
[18] T. Mumme, R. Müller-Rath, N. Jakobi, M. Weibkopf, W. Dott, R. Marx and D.-C. Wirtz, “In Vitro Serum Levels of Metal Ions Released from Orthopaedic Implants,” European Journal of Orthopaedic Surgery and Traumatology, Vol. 15, No. 2, 2011, pp. 1099-1114. doi:10.1007/s00590-004-0206-6
[19] Y. Hedberg, J. Hedberg, Y. Liu and I. Odnevall Wallinder, “Complexation- and Ligand-Induced Metal Release from 316L Par-ticles: Dependence on Particle Size and Crystal- lographic Structure,” BioMetals, Vol. 24, No. 6, 2005, pp. 83-89. doi:10.1007/s10534-011-9469-7
[20] D. T. H. Wassell and G. Embery, “Adsorption of Bovine Serum Albumin on to Titanium Powder,” Biomaterials, Vol. 17, No. 9, 1996, pp. 859-864. doi:10.1016/0142-9612(96)83280-7
[21] B. Walivaara, B.-O. Aronsson, M. Rodahl, J. Lausmaa and P. Tengvall, “Titanium with Different Oxides: In Vitro Studies of Protein Adsorption and Contact Activation,” Bio-materials, Vol. 15, No. 10, 1994, pp. 827-834. doi:10.1016/0142-9612(94)90038-8
[22] E. Tyrode, M. W. Rutland and C. D. Bain, “Adsorption of CTAB on Hydrophilic Silica Studied by Linear and Nonlinear Optical Spectroscopy,” Journal of the American Chemical Society, Vol. 130, No. 51, 2008, pp. 17434-17445. doi:10.1021/ja805169z
[23] W. Stopford, J. Turner, D. Cappellini and T. Brocka, “Bioaccessibility Testing of Cobalt Compounds,” Journal of Environmental Monitoring, Vol. 5, No. 4, 2003, pp. 675- 680. doi:10.1039/b302257a
[24] EN 1811, “Test Method for Release of Nickel from Products Intended to Come into Direct and Prolonged Contact with the Skin,” 1998.
[25] A. de Meringo, C. Morscheidt, S. Thélohan and H. Tiesler, “In Vitro Assessment of Biodurability: Acellular Systems,” Environmental Health Perspectives, Vol. 102, No. 5, 1994, pp. 1-6.
[26] S. C. Hamel, B. Buckley and P. J. Lioy, “Bioaccessibility if Metals in Soils for Different Liquid to Solid Ratios in Synthetic Gastric Fluid,” Environmental Science & Technology, Vol. 32, No. 3, 1998, pp. 358-362. doi:10.1021/es9701422
[27] M. Ocana, V. Fornés, J. V. G. Ramos and C. J. Serna, “Factors Affecting the Infrared and Raman Spectra of Rutile Powders,” Journal of Solid State Chemistry, Vol. 75, No. 2, 1988, pp. 364-372. doi:10.1016/0022-4596(88)90176-4
[28] S.-M. Oh and T. Ishigaki, “Preparation of Pure Rutile and Anatase TiO2 Nanopowders Using RF Thermal Plasma,” Thin Solid Films, Vol. 457, No. 1, 2004, pp. 186-191. doi:10.1016/j.tsf.2003.12.043
[29] V. Swamy, B. C. Muddle and Q. Dai, “Size-Dependent Modifications of the Raman Spectrum of Rutile TiO2,” Applied Physics Letters, Vol. 89, No. 16, 2006, pp. 163118-163120. doi:10.1063/1.2364123
[30] R. W. G. Syme, D. Lockwood and H. Kerr, “Raman Spectrum of Synthetic Zircon (ZrSiO4) and Thorite (ThSiO4),” Journal of Physics C: Solid State Physics, Vol. 10, No. 8, 1977, pp. 1335-1348. doi:10.1088/0022-3719/10/8/036
[31] G. G. Siu, M. J. Stokes and Y. Liu, “Variation of Fundamental and Higher-Order Raman Spectra of ZrO2 Nano-grains with Annealing Temperature,” Physical Review B, Vol. 59, No. 4, 1999, pp. 3173-3179. doi:10.1103/PhysRevB.59.3173
[32] Y. Hedberg, J. Gustafsson, H. L. Karlsson, L. Moller and I. Odnevall Wallinder, “Bioaccessibility, Bioavailability and Toxicity of Commercially Relevant Iron- and Chromium-Based Particles: In Vitro Studies with an Inhalation Perspective,” Particle and Fibre Toxicology, Vol. 7, 2010, p. 23. doi:10.1186/1743-8977-7-23
[33] Y. Hedberg, O. Karlsson, P. Szakalos and I. Odnevall Wallinder, “Ultrafine 316 L Stainless Steel Particles with Frozen-In Magnetic Structures Characterized by Means of Electron Backscattered Diffraction,” Materials Letters, Vol. 65, No. 14, 2011, pp. 2089-2092. doi:10.1016/j.matlet.2011.04.019
[34] A. J. Sedriks, “Corrosion of Stainless Steels,” 2nd Edition, John Wiley & Sons, Inc., New York, 1996.
[35] J.-H. Choy and Y.-S. Han, “Citrate Route to the Piezoelectric Pb(Zr,Ti)O3 Oxide,” Journal of Materials Chemistry, Vol. 7, No. 9, 1997, pp. 1815-1820. doi:10.1039/a700687j
[36] Y. Hedberg, K. Midander and I. Odnevall Wallinder, “Particles, Sweat, and Tears: A Comparative Study on Bioaccessibility of Ferrochromium Alloy and Stainless Steel Particles, the Pure Metals and Their Metal Oxides, in Simulated Skin and Eye Contact,” Integrated Environmental Assessment and Management, Vol. 6, No. 3, 2010, pp. 456-468. doi:10.1002/ieam.66
[37] K. Midander, A. de Frutos, Y. Hedberg, G. Darrie and I. Odnevall Wallinder, “Bioaccessibility Studies of Ferro-Chromium Alloy Particles for a Simulated Inhalation Scenario: A Comparative Study with the Pure Metals and Stainless Steel,” Integrated Environmental Assessment and Management, Vol. 6, No. 3, 2010, pp. 441-455. doi:10.1002/ieam.32
[38] H. L. Karlsson, P. Cronholm, J. Gustafsson and L. Moller, “Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes,” Chemical Research in Toxicology, Vol. 21, No. 9, 2008, pp. 1726-1732. doi:10.1021/tx800064j
[39] L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink and W. J. Stark, “Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress,” Environmental Science & Technology, Vol. 41, No. 11, 2007, pp. 4158-4163. doi:10.1021/es062629t

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.