| [1] | Peiris, J.S., Lai, S.T., Poon, L.L. and SARS Study Group (2003) Coronavirus as a Possible Cause of Severe Acute Respiratory Syndrome. The Lancet, 361, 1319-1325. https://doi.org/10.1016/S0140-6736(03)13077-2
 | 
                            
                                
                                    | [2] | Drosten, C., Gunther, S., Preiser, W., et al. (2003) Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. The New England Journal of Medicine, 348, 1967-1976. https://doi.org/10.1056/NEJMoa030747
 | 
                            
                                
                                    | [3] | Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., et al. (2020) The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-nCoV and Naming It SARS-CoV-2. Nature Microbiology, 5, 536-544. https://doi.org/10.1038/s41564-020-0695-z
 | 
                            
                                
                                    | [4] | Ducharme, J. (2020) World Health Organization Declares COVID-19 a “Pandemic”. Here’s What That Means, time.com. https://time.com/5791661/who-coronavirus-pandemic-declaration/
 | 
                            
                                
                                    | [5] | Barry, C.A. (1983) Pareto Distributions. International Co-Operative Publishing House, Fairland. | 
                            
                                
                                    | [6] | Galvani, A.P. and May, R.M. (2005) Epidemiology: Dimensions of Superspreading. Nature, 438, 293-295. https://doi.org/10.1038/438293a
 | 
                            
                                
                                    | [7] | Chin, W.C.B. and Bouffanais, R. (2020) Spatial Super-Spreaders and Super-Susceptibles in Human Movement Networks. https://arxiv.org/abs/2005.05063
 https://doi.org/10.1038/s41598-020-75697-z
 | 
                            
                                
                                    | [8] | Bergmann, K. (2014) UV-C Irradiation: A New Viral Inactivation Method for Biopharmaceuticals. America Pharmaceutical Review, Thursday, November 20, 2014. https://www.americanpharmaceuticalreview.com/Featured-Articles/169257-UV-C-
 Irradiation-A-New-Viral-Inactivation-Method-for-Biopharmaceuticals/
 | 
                            
                                
                                    | [9] | Van Doremalen, N., Morris, D.H., Holbrook, M.G., et al. (2020) Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England Journal of Medicine, 382, 16. https://doi.org/10.1056/NEJMc2004973
 | 
                            
                                
                                    | [10] | Liu, M. (2020) Overlapping and Discrete Aspects of the Pathology of SARS-CoV, MERS-CoV, and 2019-nCoV. Journal of Medical Virology, 92, 491-494. https://doi.org/10.1002/jmv.25709
 | 
                            
                                
                                    | [11] | Raoult, D., Zumla, A., Locatelli, F., et al. (2020) Coronavirus Infections: Epidemiological, Clinical and Immunological Features and Hypotheses. Cell Stress, 4, 66-75. https://doi.org/10.15698/cst2020.04.216
 | 
                            
                                
                                    | [12] | Pathak, N. (2020) The “Great Imitator”: How COVID-19 Can Look like Almost Any Condition? https://www.medicinenet.com/the_great_imitator_covid-19_coronavirus-news.htm
 | 
                            
                                
                                    | [13] | Amaghashlag, D., Kandasami, G., Almanasef, M., et al. (2020) Review on the Coronavirus Disease (COVID-19) Pandemic: Its Outbreak and Current Status. International Journal of Clinical Practice, 74, e13637. https://doi.org/10.1111/ijcp.13637
 | 
                            
                                
                                    | [14] | Scarpetta, S., Pearson, M., Colombo, F., et al. (2020) OECD Treatments and a Vaccine for COVID-19: The Need for Coordinating Policies on R&D, Manufacturing and Access. | 
                            
                                
                                    | [15] | Mather, N. (2020) How We Accelerated Clinical Trials in the Age of Coronavirus. Nature, 584, 326. https://doi.org/10.1038/d41586-020-02416-z
 | 
                            
                                
                                    | [16] | Coronavirus Research Database, Stanford University. https://covdb.stanford.edu/search/?study=clinical-studies&virus=SARS-CoV-2
 | 
                            
                                
                                    | [17] | Weinrauch, Y. and Zychlinsky, A. (1999) The Induction of Apoptosis by Bacterial Pathogens. Annual Review of Microbiology, 53, 155-187. https://doi.org/10.1146/annurev.micro.53.1.155
 | 
                            
                                
                                    | [18] | Feys, B.J. and Parker, J.E. (2000) Interplay of Signaling Pathways in Plant Disease Resistance. Trends in Genetics, 16, 4449-4555. https://doi.org/10.1016/S0168-9525(00)02107-7
 | 
                            
                                
                                    | [19] | Jacobson, M.D., Weil, M. and Raff, M.C. (1997) Programmed Cell Death in Animal Development. Cell, 88, 347-354. https://doi.org/10.1016/S0092-8674(00)81873-5
 | 
                            
                                
                                    | [20] | Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257. https://doi.org/10.1038/bjc.1972.33
 | 
                            
                                
                                    | [21] | Wyllie, A.H. (1980) Glucocorticoid-Induced Thymocyte Apoptosis Is Associated with Endogenous Endonuclease Activation. Nature, 284, 555-556. https://doi.org/10.1038/284555a0
 | 
                            
                                
                                    | [22] | Núñez, G., Benedict, M.A., Hu, Y. and Inohara, N. (1998) Caspases: The Proteases of the Apoptotic Pathway. Oncogene, 17, 3237-3245. https://doi.org/10.1038/sj.onc.1202581
 | 
                            
                                
                                    | [23] | Kumar, S. (1999) Mechanisms Mediating Caspase Activation in Cell Death. Cell Death & Differentiation, 6, 1060-1066. https://doi.org/10.1038/sj.cdd.4400600
 | 
                            
                                
                                    | [24] | Ganz, T. (2003) Defensins: Antimicrobial Peptides of Innate Immunity. Nature Reviews Immunology, 3, 710-720. https://doi.org/10.1038/nri1180
 | 
                            
                                
                                    | [25] | Yousefifard, M., Zali, A., Ali, K.M., et al. (2020) Antiviral Therapy in Management of COVID-19: A Systematic Review on Current Evidence. Archives of Academic Emergency Medicine, 8, e45. https://doi.org/10.1111/ijcp.13557
 | 
                            
                                
                                    | [26] | Nitolescu, G.M., Paunescu, H., Moschos, S.A., et al. (2020) Comprehensive Analysis of Drugs to Treat SARS-CoV-2 Infection: Mechanistic Insights into Current Covid-19 Therapies (Review). International Journal of Molecular Medicine, 46, 467-488. https://doi.org/10.3892/ijmm.2020.4608
 | 
                            
                                
                                    | [27] | Callawy, E. (2020) The Race for Coronavirus Vaccines. Nature, 580, 576-577. https://doi.org/10.1038/d41586-020-01221-y
 | 
                            
                                
                                    | [28] | Siemieniuk, R.A.C., Bartoszko, J.J., Ge, L., et al. (2020) Drug Treatments for Covid-19: Living Systematic Review and Network Meta-Analysis. BMJ, 370, m2980. | 
                            
                                
                                    | [29] | NIH Halts Clinical Trial of Hydroxychloroquine. https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine
 | 
                            
                                
                                    | [30] | Chen, C., Huang, J., Cheng, Z., Wu, J., Chen, S., Zhang, Y., et al. (2020) Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. https://doi.org/10.1101/2020.03.17.20037432
 | 
                            
                                
                                    | [31] | Grein, J., Ohmagari, N., Shin, D., et al. (2020) Compassionate Use of Remdesivir for Patients with Severe COVID-19. New England Journal of Medicine, 382, 2327-2336. https://doi.org/10.1056/NEJMoa2007016
 | 
                            
                                
                                    | [32] | Beigel, J.H., Tomashek, K.M., Dodd, L.E., Mehta, A.K., Zingman, B.S., Kalil, A.C., et al. (2020) Remdesivir for the Treatment of Covid-19—Preliminary Report. New England Journal of Medicine, 383, 993. https://doi.org/10.1056/NEJMoa2007764
 | 
                            
                                
                                    | [33] | Sheahan, T.P., Sims, A.C., Leist, S.R., Schäfer, A., Won, J., Brown, A.J., et al. (2020) Comparative Therapeutic Efficacy of Remdesivir and Combination Lopinavir, Ritonavir, and Interferon Beta against MERS-CoV. Nature Communications, 11, 222. https://doi.org/10.1038/s41467-019-13940-6
 | 
                            
                                
                                    | [34] | Kim, U.J., Won, E.J., Kee, S.J., Jung, S.I. and Jang, H.C. (2016) Combination Therapy with Lopinavir/Ritonavir, Ribavirin and Interferon-α for Middle East Respiratory Syndrome. Antiviral Therapy, 21, 455-459. https://doi.org/10.3851/IMP3002
 | 
                            
                                
                                    | [35] | del Rio, C. and Malani, P.N. (2019) Novel Coronavirus—Important Information for Clinicians. JAMA, 323, 1039-1040. https://doi.org/10.1001/jama.2020.1490
 | 
                            
                                
                                    | [36] | Lim, J., Jeon, S., Shin, H.Y., Kim, M.J., Seong, Y.M., Lee, W.J., et al. (2020) Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: The Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. Journal of Korean Medical Science, 35, e79. https://doi.org/10.3346/jkms.2020.35.e89
 | 
                            
                                
                                    | [37] | Cao, B., et al. (2020) A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. The New England Journal of Medicine, 382, 1787-1799. https://doi.org/10.1056/NEJMoa2001282
 | 
                            
                                
                                    | [38] | Jawhara, S. (2020) Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? International Journal of Molecular Sciences, 21, 2272. https://doi.org/10.3390/ijms21072272
 | 
                            
                                
                                    | [39] | Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D. and Li, J. (2020) Tocilizumab Treatment in COVID-19: A Single Center Experience. Journal of Medical Virology, 92, 814-848. https://doi.org/10.1002/jmv.25801
 | 
                            
                                
                                    | [40] | Ledford, H. (2020) US Widens Access to Covid-19 Plasma—Despite Lack of Data. Nature, 584, 505. https://doi.org/10.1038/d41586-020-02324-2
 | 
                            
                                
                                    | [41] | Sullivan, H.C. and Roback, J.D. (2020) Convalescent Plasma: Therapeutic Hope or Hopeless Strategy in the SARS-CoV-2 Pandemic. Transfusion Medicine Reviews, 34, 145-150. https://doi.org/10.1016/j.tmrv.2020.04.001
 | 
                            
                                
                                    | [42] | Cohrane-Targeted Update: Safety and Efficacy of Hydroxychloroquine or Chloroquine for Treatment of Covid-19. https://www.who.int/publications/m/item/targeted-update-safety-and-efficacy-of-
 hydroxychloroquine-or-chloroquine-for-treatment-of-covid-19
 | 
                            
                                
                                    | [43] | Zhou, Y., Chen, V., Shannon, C.P., et al. (2020) Interferon-α2b Treatment for Covid-19. Frontiers in Immunology, 11, 1061. https://doi.org/10.3389/fimmu.2020.01061
 | 
                            
                                
                                    | [44] | Fu, W., Liu, Y., Xia, L., et al. (2020) A Clinical Pilot Study on the Safety and Efficacy of Aerosol Inhalation Treatment of IFN-κ plus TFF2 in Patients with Moderate COVID-19. EClinicalMedicine, 25, Article ID: 100478. https://doi.org/10.1016/j.eclinm.2020.100478
 | 
                            
                                
                                    | [45] | Krammer, F. (2020) SARS-CoV-2 Vaccines in Development. Nature, 586, 516-527. https://doi.org/10.1038/s41586-020-2798-3
 | 
                            
                                
                                    | [46] | Li, W., Schafer, A., Kulkarni, S.S., et al. (2020) High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. Cell, 183, 429-441.e16. https://doi.org/10.1016/j.cell.2020.09.007
 | 
                            
                                
                                    | [47] | Logunov, D.Y., Dolzhikova, I.V., Zubkova, O.V., et al. (2020) Safety and Immunogenicity of an rAd26 and rAd5 Vector-Based Heterologous Prime-Boost Covid-19 Vaccine in Two Formulations: Two Open, Non-Randomised Phase 1/2 Studies from Russia. The Lancet, 396, 887-897. https://doi.org/10.1016/S0140-6736(20)31866-3
 | 
                            
                                
                                    | [48] | Burki, T.K. (2020) The Russian Vaccine for COVID-19. The Lancet Respiratory Medicine, 8, E85-E86. https://doi.org/10.1016/S2213-2600(20)30402-1
 | 
                            
                                
                                    | [49] | Bar-Zeev, N. and Inglesby, T. (2020) COVID-19 Vaccines: Early Success and Remaining Challenges. The Lancet, 396, 868-869. https://doi.org/10.1016/S0140-6736(20)31867-5
 | 
                            
                                
                                    | [50] | Coronavirus: Oxford University Vaccine Trial Paused after Participant Falls Ill. https://www.bbc.com/news/world-54082192
 | 
                            
                                
                                    | [51] | Foster, R. and Mundell, E.J. (2020) Details Emerge on Unexplained Illness in AstraZeneca COVID Vaccine Trial. Medical Press. https://medicalxpress.com/news/2020-09-emerge-unexplained-illness-astrazeneca-covid.html
 | 
                            
                                
                                    | [52] | Cyranoski, D. and Malapaty, S. (2020) Relief as Coronavirus Vaccine Trials Restart—But Transparency Concerns Remain. Nature, 585, 331-332. https://doi.org/10.1038/d41586-020-02633-6
 | 
                            
                                
                                    | [53] | Pan, H.-C., Peto, R., Karim, Q.A., Alejandria, M., Henao-Restrepo, A.M., García, C.H., Kieny, M.-P., Malekzadeh, R., Murthy, S., Preziosi, M.-P., Reddy, S., Periago, M.R., Sathiyamoorthy, V., Røttingen, J.-A., Swaminathan, S. and WHO Solidarity Trial Consortium (2020) Repurposed Antiviral Drugs for COVID-19-Interim WHO Solidarity Trial Results. | 
                            
                                
                                    | [54] | Fox, M. (2020) Johnson & Johnson Pauses Covid-19 Vaccine Trial after “Unexplained Illness”. https://edition.cnn.com/2020/10/12/health/johnson-coronavirus-vaccine-pause-bn/index.html
 | 
                            
                                
                                    | [55] | Lovelace, B. and Farr, C. (2020) U.S. Pauses Eli Lilly’s Trial of a Coronavirus Antibody Treatment over Safety Concerns. https://www.cnbc.com/2020/10/13/us-pauses-eli-lillys-trial-of-a-coronavirus-antibody-treatment-over-safety-concerns.html
 | 
                            
                                
                                    | [56] | Horby, P., Lim, W.S., Emberson, J.R., et al. (2020) The Recovery Collaborative Group, Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. NEJM. | 
                            
                                
                                    | [57] | Wolf, Y.I., Katsnelson, M.I. and Koonin, E.V. (2018) Physical Foundations of Biological Complexity. PNAS, 115, E8678-E8687. https://doi.org/10.1073/pnas.1807890115
 | 
                            
                                
                                    | [58] | Wu, M. and Higgs, P.G. (2012) The Origin of Life Is a Spatially Localized Stochastic Transition. Biology Direct, 7, 42. https://doi.org/10.1186/1745-6150-7-42
 | 
                            
                                
                                    | [59] | Hegyi, G., Vincze, Gy. and Szasz, A. (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics, 2, 64-71. https://doi.org/10.4236/ojbiphy.2012.23009
 | 
                            
                                
                                    | [60] | Modell, H., Cliff, W., Michael, J., et al. (2015) A Physiologist’s View of Homeostasis. Advances in Physiology Education, 39, 259-266. https://doi.org/10.1152/advan.00107.2015
 | 
                            
                                
                                    | [61] | Billman, G.E. (2020) Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Frontiers in Physiology, 11, 200. https://doi.org/10.3389/fphys.2020.00200
 | 
                            
                                
                                    | [62] | Eskov, V.M., Filatova, O.E., Eskov, V.V., et al. (2017) The Evolution of the Idea of Homeostasis: Determinism, Stochastics, and Chaos—Self-Organization. Biophysics, 62, 809-820. https://doi.org/10.1134/S0006350917050074
 | 
                            
                                
                                    | [63] | von Bertalanffy, K.L. (1934) Untersuchungen über die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie; mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux’ Archive für Entwicklungsmechanik der Organismen, 131, 613-652. https://doi.org/10.1007/BF00650112
 | 
                            
                                
                                    | [64] | Jakubik, J., Randáková, A., Rudajev, V., et al. (2019) Application and Limitations of Fitting of the Operational Model to Determine Relative Efficacies of Agonists. Scientific Reports, 9, Article No. 4637. https://doi.org/10.1038/s41598-019-40993-w
 | 
                            
                                
                                    | [65] | Turing, A.M. (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 237, 37-72. https://doi.org/10.1098/rstb.1952.0012
 | 
                            
                                
                                    | [66] | Aronson, J.K. (2016) The Hitchhiker’s Guide to Clinical Pharmacology, Pharmacodynamics: How Drugs Work. https://www.cebm.net/wp-content/uploads/2016/05/Pharmacodynamics-How-drugs-work.pdf
 | 
                            
                                
                                    | [67] | Wierman, M.J. (2010) An Introduction to Mathematics of Uncertainty. Hoors Program, Creighton University, College of Arts and Sciences, Omaha. http://typo3.creighton.edu/fileadmin/user/CCAS/programs/fuzzy_math/docs/MOU.pdf
 | 
                            
                                
                                    | [68] | Nurgali, K., Jagoe, R.T. and Abalo, R. (2018) Editorial-Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Frontiers in Pharmacology, 9, 245. https://doi.org/10.3389/fphar.2018.00245
 | 
                            
                                
                                    | [69] | Devaux, C. and Schoepffler, P. (1979) Side-Effects of Mixed Agonist-Antagonist Analgesics Used in Sequential Anaesthesia. British Journal of Clinical Pharmacology, 7, 323S-326S. https://doi.org/10.1111/j.1365-2125.1979.tb04708.x
 | 
                            
                                
                                    | [70] | Rosenberg, S.M. and Queitsch, C. (2014) Combating Evolution to Fight Disease. Science, 343, 1088-1089. https://doi.org/10.1126/science.1247472
 | 
                            
                                
                                    | [71] | West, B.J. (2006) Where Medicine Went Wrong: Rediscovering the Path to Complexity. World Scientific, London. https://doi.org/10.1142/6175
 | 
                            
                                
                                    | [72] | Pei, Y. (2015) From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization. The Scientific World Journal, 2015, Article ID: 704587. https://doi.org/10.1155/2015/704587
 | 
                            
                                
                                    | [73] | Brown, J.H. and West, G.B. (2000) Scaling in Biology, Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, Oxford. | 
                            
                                
                                    | [74] | Calder, W.A. (1996) Size, Function and Life History. Dover Publications, Inc., Mineola, New York. | 
                            
                                
                                    | [75] | Cohen, I.R. and Harel, D. (2007) Explaining a Complex Living System: Dynamics, Multi-Scaling and Emergence. Journal of the Royal Society Interface, 4, 175-182. https://doi.org/10.1098/rsif.2006.0173
 | 
                            
                                
                                    | [76] | Szasz, O., Szigeti, Gy.P. and Szasz, A. (2017) On the Self-Similarity in Biological Processes. Open Journal of Biophysics, 7, 183-196. https://doi.org/10.4236/ojbiphy.2017.74014
 | 
                            
                                
                                    | [77] | Walleczek, J. (2000) Self-Organized Biological Dynamics & Nonlinear Control. Cambridge Univ. Press, Cambridge. https://doi.org/10.1017/CBO9780511535338
 | 
                            
                                
                                    | [78] | West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore, London. | 
                            
                                
                                    | [79] | Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology. Oxford Univ. Press, New York, Oxford. https://doi.org/10.1007/978-1-4614-7572-9
 | 
                            
                                
                                    | [80] | Sego, T.J., Gianlupi, J.F., Aponte-Serrano, J., et al. (2020) A Modular Framework for Multiscale Multicellular Spatial Modeling of Viral Infection, Immune Response and Drug Therapy Timing and Efficacy in Epithelial Tissues. https://doi.org/10.1101/2020.04.27.064139
 | 
                            
                                
                                    | [81] | He, J.-H. (2008) Fatalness of Virus Depends upon Its Cell Fractal Geometry. Chaos, Solitons and Fractals, 38, 1390-1393. https://doi.org/10.1016/j.chaos.2008.04.018
 | 
                            
                                
                                    | [82] | Frolich, H. (1988) Biological Coherence and Response to External Stimuli. Springer Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-73309-3
 | 
                            
                                
                                    | [83] | Szendro, P., Vincze, G. and Szasz, A. (2001) Pink Noise Behaviour of the Bio-Systems. European Biophysics Journal, 30, 227-231. https://doi.org/10.1007/s002490100143
 | 
                            
                                
                                    | [84] | Mode, C.J., Durrett, R., Klebaner, F., et al. (2013) Applications of Stochastic Processes in Biology and Medicine. International Journal of Stochastic Analysis, 2013, Article ID: 790625. https://doi.org/10.1155/2013/790625
 | 
                            
                                
                                    | [85] | Thimann, K.V. (1956) Promotion and Inhibition: Twin Themes of Physiology. American Naturalist, 90, 145-162. https://doi.org/10.1086/281921
 | 
                            
                                
                                    | [86] | Nickson, C., Iwashyna, J. and Young, P. (2020) COVID-19: Keeping the Baby in the Bath. https://litfl.com/covid-19-keeping-the-baby-in-the-bath
 | 
                            
                                
                                    | [87] | Ortiz-Prado, E., Simbana-Rivera, K., Gomez-Barreno, L., et al. (2020) Clinical, Molecular and Epidemiological Characterization of the SARS-CoV-2 Virus and the Coronavirus Disease 2019 (COVID-19), a Comprehensive Literature Review. Diagnostic Microbiology and Infectious Disease, 98, Article ID: 115094. https://doi.org/10.1016/j.diagmicrobio.2020.115094
 | 
                            
                                
                                    | [88] | Chen, I.-Y., Chang, S.-C., Wu, H.-Y., et al. (2010) Upregulation of the Chemokine (C-C Motif) Ligand 2 via a Severe Acute Respiratory Syndrome Coronavirus Spike-ACE2 Signaling Pathway. Journal of Virology, 84, 7703-7712. https://doi.org/10.1128/JVI.02560-09
 | 
                            
                                
                                    | [89] | Verdecchia, P., Cavallini, C., Spanevello, A., et al. (2020) The Pivotal Link between ACE2 Deficiency and SARS-CoV-2 Infection. European Journal of Internal Medicine, 76, 14-20. https://doi.org/10.1016/j.ejim.2020.04.037
 | 
                            
                                
                                    | [90] | Chung, M.K., Karnik, S., Saef, J., et al. (2020) SARS-CoV-2 and ACE2: The Biology and Clinical Data Settling the ARB and ACEI Controversy. EBioMedicine, 58, Article ID: 102907. https://doi.org/10.1016/j.ebiom.2020.102907
 | 
                            
                                
                                    | [91] | Belouzard, S., Millet, J.K., Licitra, B.N., et al. (2012) Mechanisms of Coronavirus Cell Entry Mediated by the Viras Spike Protein. Viruses, 4, 1011-1033. https://doi.org/10.3390/v4061011
 | 
                            
                                
                                    | [92] | Breidenbach, J.D., Dude, P., Gosh, S., et al. (2020) Impact of Comorbidities on SARS-CoV-2 Viral Entry-Related Genes. Journal of Personalized Medicine, 10, 146. https://doi.org/10.3390/jpm10040146
 | 
                            
                                
                                    | [93] | Hoffman, M., Kleine-Weber, H., Schroeder, S., et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280. https://doi.org/10.1016/j.cell.2020.02.052
 | 
                            
                                
                                    | [94] | Heurich, A., Hofmann-Winkler, H., Giere, S., et al. (2020) TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Virology, 88, 1293-1307. https://doi.org/10.1128/JVI.02202-13
 | 
                            
                                
                                    | [95] | Ou, X., Liu, Y., Lei, X., et al. (2020) Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and Its Immune Cross-Reactivity with SARS-CoV. Nature Communications, 11, 1620. https://doi.org/10.1038/s41467-020-15562-9
 | 
                            
                                
                                    | [96] | Kim, S.Y., Jin, W., Sood, A., Montgomery, D.W., Grant, O.C., Fuster, M.M., Fu, L., Dordick, J.S., Woods, R.J., Zhang, F., et al. (2020) Characterization of Heparin and Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Spike Glycoprotein Binding Interactions. Antiviral Research, 181, Article ID: 104873. https://doi.org/10.1016/j.antiviral.2020.104873
 | 
                            
                                
                                    | [97] | Hudak, A., Szilak, L. and Letoha, T. (2020) Contribution of Syndecans to the Cellular Entry of SARS-CoV-2. Research Square. https://doi.org/10.21203/rs.3.rs-70340/v1
 | 
                            
                                
                                    | [98] | Schött, U., Solomon, C., Fries, D., et al. (2016) The Endothelial Glycocalyx and Its Disruption, Protection and Regeneration: A Narrative Review. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, 48. https://doi.org/10.1186/s13049-016-0239-y
 | 
                            
                                
                                    | [99] | de Haan, C.A., Haijema, B.J., Schellen, P., Wichgers Schreur, P., te Lintelo, E., Vennema, H. and Rottier, P.J. (2018) Cleavage of Group 1 Coronavirus Spike Proteins: How Furin Cleavage Is Traded off against Heparan Sulfate Binding upon Cell Culture Adaptation. Journal of Virology, 82, 6078-6083. https://doi.org/10.1128/JVI.00074-08
 | 
                            
                                
                                    | [100] | Ren, L., Zhang, Y., Li, J., et al. (2015) Genetic Drift of Human Coronavirus OC43 Spike Gene during Adaptive Evolution. Scientific Reports, 5, Article No. 11451. https://doi.org/10.1038/srep11451
 | 
                            
                                
                                    | [101] | Bermejo-Jambrina, M., Eder, J., Kaptein, T.M., et al. (2020) SARS-CoV-2 Infection and Transmission Depends on Heparan Sulfates and Is Blocked by Low Molecular Weight Heparins. https://doi.org/10.1101/2020.08.18.255810
 | 
                            
                                
                                    | [102] | Negri, E.M., Piloto, B.M., Morinaga, L.K., et al. (2020) Heparin Therapy Improving Hypoxia in COVID-19 Patients a Case Series. https://doi.org/10.1101/2020.04.15.20067017
 | 
                            
                                
                                    | [103] | Thachil, J. (2020) The Versatile Heparin in COVID-19. Journal of Thrombosis and Haemostasis, 18, 1020-1022. https://doi.org/10.1111/jth.14821
 | 
                            
                                
                                    | [104] | Park, P.W. (2020) Extracellular Matrix: Surface Proteoglycans. In: Encyclopedia of Respiratory Medicine, 2nd Edition, Elsevier, Amsterdam, 1-8. https://doi.org/10.1016/B978-0-12-801238-3.11650-2
 | 
                            
                                
                                    | [105] | Shang, J., Wan, Y., Luo, C., et al. (2020) Cell Entry Mechanisms of SARS-CoV-2. PNAS, 117, 11727-11734. https://doi.org/10.1073/pnas.2003138117
 | 
                            
                                
                                    | [106] | Terali, K., Baddal, B. and Gulcan, H.O. (2020) Prioritizing Potential ACE2 Inhibitors in the COVID-19 Pandemic: Insights from a Molecular Mechanics-Assisted Structure-Based Virtual Screening Experiment. Journal of Molecular Graphics and Modelling, 100, Article ID: 107697. https://doi.org/10.1016/j.jmgm.2020.107697
 | 
                            
                                
                                    | [107] | Goldberg, A. (2020) ACE2 in COVID-19: Is It Friend or Foe? Labtag Blog. https://blog.labtag.com/ace2-in-covid-19-is-it-friend-or-foe
 | 
                            
                                
                                    | [108] | Guan, W.-J., Ni, Z.-Y., Liang, W.-H., et al. (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382, 1708-1720. https://doi.org/10.1056/NEJMoa2002032
 | 
                            
                                
                                    | [109] | Crackower, M.A., Sarao, R., Oliveira-dos-Santos, A.J., Da Costa, J., Zhang, L., et al. (2002) Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function. Nature, 417, 822-828. https://doi.org/10.1038/nature00786
 | 
                            
                                
                                    | [110] | Turner, A.J. (2015) ACE2 Cell Biology, Regulation, and Physiological Functions. In: The Protective Arm of the Renin-Angiotensin System (RAS), Elsevier, Amsterdam, 185-189, Chapter 25. https://doi.org/10.1016/B978-0-12-801364-9.00025-0
 | 
                            
                                
                                    | [111] | Banu, N., Panikar, S.S., Leal, L.R., et al. (2020) Protective Role of ACE2 and Its Downregulation in SARS-CoV-2 Infection Leading to Macrophage Activation Syndrome: Therapeutic Implications. Life Sciences, 256, Article ID: 117905. https://doi.org/10.1016/j.lfs.2020.117905
 | 
                            
                                
                                    | [112] | Gonzalez-Villalobos, R.A., Shen, X.Z., Bernstein, E.A., Janjulia, T., Taylor, B., Giani, J.F., et al. (2013) Rediscovering ACE: Novel Insights into the Many Roles of the Angiotensin-Converting Enzyme. Journal of Molecular Medicine, 91, 1143-1154. https://doi.org/10.1007/s00109-013-1051-z
 | 
                            
                                
                                    | [113] | Cheng, H., Wang, Y. and Wang, G. (2020) Organ-Protective Effect of Angiotensin-Converting Enzyme 2 and Its Effect on the Prognosis of COVID-19. Journal of Medical Virology, 92, 726-730. https://doi.org/10.1002/jmv.25785
 | 
                            
                                
                                    | [114] | Bernstrein, K.E., Khan, Z., Giani, J.F., et al. (2017) Angiotensin-Converting Enzyme in Innate and Adaptive Immunity. Nature Reviews Nephrology, 14, 325-336. https://doi.org/10.1038/nrneph.2018.15
 | 
                            
                                
                                    | [115] | Bosso, M., Thanaraj, T.A., Abu-Farha, M., Alanbaei, M., et al. (2020) The Two Faces of ACE2: The Role of ACE2 Receptor and Its Polymorphysms in Hyperthension and COVID-19. Molecular Therapy—Methods and Clinical Development, 18, 321-327. https://doi.org/10.1016/j.omtm.2020.06.017
 | 
                            
                                
                                    | [116] | Tsioufis, C., Dimitriadis, K. and Tousoulis, D. (2020) The Interplay of Hypertension, ACE-2 and SARS-CoV-2: Emerging Data as the “Ariadne’s Thread” for the “Labyrinth” of COVID-19. Hellenic Journal of Cardiology, 61, 31-33. https://doi.org/10.1016/j.hjc.2020.05.003
 | 
                            
                                
                                    | [117] | Devaux, C.A., Rolain, J.-M. and Raoult, D. (2020) ACE2 Receptor Polymorphism: Susceptibility to SARS-CoV-2, Hypertension, Multi-Organ Failure, and COVID-19 Disease Outcome. Journal of Microbiology, Immunology and Infection, 53, 425-435. https://doi.org/10.1016/j.jmii.2020.04.015
 | 
                            
                                
                                    | [118] | Ruiz, C.M.T., Balarin, Spadotto, M.A., Tanaka, S.C.S., Silva Mota da, V.I., Trovó de, M.A.B., et al. (2018) Polycystic Ovarian Syndrome: rs1799752 Polymorphism of ACE Gene. Revista da Associação Médica Brasileira, 64, 1017-1022. https://doi.org/10.1590/1806-9282.64.11.1017
 | 
                            
                                
                                    | [119] | Zheng, H. and Cao, J.J. (2020) Angiotensin-Converting Enzyme Gene Polymorphism and Severe Lung Injury in Patients with Coronavirus Disease 2019. The American Journal of Pathology, 190, 1-5. https://doi.org/10.1016/j.ajpath.2020.07.009
 | 
                            
                                
                                    | [120] | Reynolds, H.R., Adhikari, S., Pulgarin, C., Troxel, A.B., Iturrate, E., Johnson, S.B., Hausvater, A., Newman, J.D., Berger, J.S., Bangalore, S., et al. (2020) Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. The New England Journal of Medicine, 382, 2441-2448. https://doi.org/10.1056/NEJMoa2008975
 | 
                            
                                
                                    | [121] | Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J.J.V., Pfeffer, M.A. and Solomon, S.D. (2020). Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. The New England Journal of Medicine, 382, 1653-1659. https://doi.org/10.1056/NEJMsr2005760
 | 
                            
                                
                                    | [122] | Li, Y., Zhou, W., Yang, L., et al. (2020) Physiological and Pathological Regulation of ACE2, the SARS-CoV-2 Receptor. Pharmacological Research, 1587, Article ID: 104833. https://doi.org/10.1016/j.phrs.2020.104833
 | 
                            
                                
                                    | [123] | Kalberg, J., Chong, D.S.Y. and Lai, W.Y.Y. (2004) Do Men Have a Higher Case Fatality Rate of Severe Acute Respiratory Syndrome than Women Do? American Journal of Epidemiology, 159, 229-231. https://doi.org/10.1093/aje/kwh056
 | 
                            
                                
                                    | [124] | Chakravarty, D., Nair, S.S., Hammouda, N., et al. (2020) Sex Differences in SARS-CoV-2 Infection Rates and the Potential Link to Prostate Cancer. Communications Biology, 3, 374. https://doi.org/10.1038/s42003-020-1088-9
 | 
                            
                                
                                    | [125] | Poletti, P., Tirani, M., Cereda, D., et al. (2020) Age-Specific SARS-CoV-2 Infection Fatality Ratio and Associated Risk Factors, Italy, February to April 2020. Eurosurveillance, 25, pii=2001383. https://doi.org/10.2807/1560-7917.ES.2020.25.31.2001383
 | 
                            
                                
                                    | [126] | Zhang, J., Wu, J., Sun, X., et al. (2020) Association of Hypertension with the Severity of SARS-CoV-2 Infection: A Meta-Analysis. Epidemiology and Infection, 148, e106. https://doi.org/10.1017/S095026882000117X
 | 
                            
                                
                                    | [127] | Mazucanti, C.H. and Egan, J.M. (2020) SARS-CoV-2 Disease Severity and Diabetes: Why the Connection and What Is to Be Done? Immunity and Ageing, 17, 21. https://doi.org/10.1186/s12979-020-00192-y
 | 
                            
                                
                                    | [128] | Nishiga, M., Wang, D.W., Han, Y., et al. (2020) COVID-19 and Cardiovascular Disease: From Basic Mechanisms to Clinical Perspectives. Nature Reviews Cardiology, 17, 543-558. https://doi.org/10.1038/s41569-020-0413-9
 | 
                            
                                
                                    | [129] | Schultze, A., Walker, A.J., MacKenna, B., et al. (2020) Risk of COVID-19-Related Death among Patients with Chronic Obstructive Pulmonary Disease or Asthma Prescribed Inhaled Corticosteroids: An Observational Cohort Study Using the OpenSAFELY Platform. The Lancet Respiratory Medicine, 8, 1106-112. https://doi.org/10.1016/S2213-2600(20)30415-X
 | 
                            
                                
                                    | [130] | Wu, V.-C., Hsueh, P.-R., Lin, W.-C., et al. (2014) Acute Renal Failure in SARS Patients: More than Rhabdomyoliysis. Nephrology Dialysis Transplantation, 19, 3180-3182. https://doi.org/10.1093/ndt/gfh436
 | 
                            
                                
                                    | [131] | Rubino, F., Amiel, S.A., Zimmet, P., et al. (2020) New-Onset Diabetes in Covid-19. New England Journal of Medicine, 383, 789-790. https://doi.org/10.1056/NEJMc2018688
 | 
                            
                                
                                    | [132] | Malapaty, S. (2020) Evidence Suggests the Coronavirus Might Trigger Diabetes. Nature, 583, 16-17. https://doi.org/10.1038/d41586-020-01891-8
 | 
                            
                                
                                    | [133] | Diao, B., Wang, C., Wang, R., et al. (2020) Human Kidney Is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. https://doi.org/10.1101/2020.03.04.20031120
 | 
                            
                                
                                    | [134] | Madjid, M., Safavi-Naeini, P., Solomon, S., et al. (2020) Potential Effects of Coronaviruses on the Cardiovascular System—A Review. JAMA Cardiology, 5, 831-840. https://doi.org/10.1001/jamacardio.2020.1286
 | 
                            
                                
                                    | [135] | Puelles, V.G., Lütgehetmann, M., Lindenmeyer, M.T., et al. (2020) Multiorgan and Renal Tropism of SARS-CoV-2. The New England Journal of Medicine, 383, 590-592. https://doi.org/10.1056/NEJMc2011400
 | 
                            
                                
                                    | [136] | Radzikowska, U., Ding, M., Tan, G., et al. (2020) Distribution of ACE2, CD147, CD26, and Other SARS-CoV-2 Associated Molecules in Tissues and Immune Cells in Health and in Asthma, COPD, Obesity, Hypertension, and COVID-19 Risk Factors. Allergy, 75, 2829-2845. https://doi.org/10.1111/all.14429
 | 
                            
                                
                                    | [137] | Tian, S.F., Hu, W.D., Niu, L., et al. (2020) Pulmonary Pathology of Early Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients with Lung Cancer. Journal of Thoracic Oncology, 15, 700-704. https://doi.org/10.1016/j.jtho.2020.02.010
 https://pubmed.ncbi.nlm.nih.gov/32114094
 | 
                            
                                
                                    | [138] | Crowley, S.D. and Rudemiller, N.P. (2017) Immunologic Effects of the Renin-An-giotensin System. Journal of the American Society of Nephrology, 28, 1350-1361. https://doi.org/10.1681/ASN.2016101066
 | 
                            
                                
                                    | [139] | Silhol, F., Sarlon, G., Deharo, J.-C., et al. (2020) Downregulation of ACE2 Induces Overstimulation of the Renin-Angiotensin System in COVID-19: Should We Block the Renin-Angiotensin System? Hypertension Research, 43, 854-856. https://doi.org/10.1038/s41440-020-0476-3
 | 
                            
                                
                                    | [140] | Fountain, J.H. and Lappin, S.L. (2020) Physiology, Renin Angiotensin System. https://www.ncbi.nlm.nih.gov/books/NBK470410/?report=printable
 | 
                            
                                
                                    | [141] | Luo, H., Wang, X., Chen, C., et al. (2015) Oxidative Stress Causes Imbalance of Renal Renin Angiotensin System (RAS) Components and Hyperthension in Obese Zucker Rats. Journal of the American Heart Association, 4, e001559. https://doi.org/10.1161/JAHA.114.001559
 | 
                            
                                
                                    | [142] | Dambic, V., Pojatic, D., Stazic, A., et al. (2020) Significance of the Renin-Angioten-sin System in Clinical Conditions. In: Kibel, A., Ed., Selected Chapter from the Renin-Angiotensin System, IntechOpen, London. https://doi.org/10.5772/intechopen.92309
 | 
                            
                                
                                    | [143] | Tolouian, R., Vahed, S.Z., Ghiyasvand, S., et al. (2020) COVID-19 Interactions with Angiotensin-Converting Enzyme 2 (ACE2) and the Kinin System: Looking at a Potential Treatment. Journal of Renal Injury Prevention, 9, e19. https://doi.org/10.34172/jrip.2020.19
 | 
                            
                                
                                    | [144] | Tschope, C., Schultheiss, H.-P. and Walther, T. (2002) Multiple Interactions between Renin-Angiotensin and the Kallikrein-Kinin Systems: Role of ACE Inhibition and AT1 Receptor Blockade. Journal of Cardiovascular Pharmacology, 39, 478-487. https://doi.org/10.1097/00005344-200204000-00003
 | 
                            
                                
                                    | [145] | Sidarta-Oliveira, D., Jara, C.P., Ferruzzi, A.J., et al. (2020) SARS-CoV-2 Receptor Is Co-Expressed with Elements of the Kinin-Kallikrein, Renin-Angiotensin and Coagulation Systems in Alveolar Cells. https://doi.org/10.1101/2020.06.02.20120634
 | 
                            
                                
                                    | [146] | Zuo, W., Zhao, X. and Chen, Y.-G. (2020) SARS Coronavirus and Lung Fibrosis. In: Lal, S.K., Ed., Molecular Biology of the SARS-Coronavirus, Springer-Verlag, Berlin, Chapter 15, 247-258. https://doi.org/10.1007/978-3-642-03683-5_15
 | 
                            
                                
                                    | [147] | Golias, Ch., Charalabopoulos, A., Stagikas, D., et al. (2007) The Kinin System— Bradykinin: Biological Effects and Clinical Implications. Multiple Role of the Kinin System—Bradykinin. Hippokratia, 11, 124-128. | 
                            
                                
                                    | [148] | Garvin, M.R., Alvarez, C., Miller, J.I., et al. (2020) A Mechanistic Model and Therapeutic Interventions for COVID-19 Involving a RAS-Mediated Bradykinin Storm. eLife, 9, e59177. https://doi.org/10.7554/eLife.59177
 | 
                            
                                
                                    | [149] | van de Veerdonk, F.L., Netea, M.G., van Deuren, M., et al. (2020) Kinins and Cytokines in COVID-19: A Comprehensive Pathophysiological Approach. https://doi.org/10.20944/preprints202004.0023.v1
 | 
                            
                                
                                    | [150] | Delpino, M.V. and Quarleri, J. (2020) SARS-CoV-2 Pathogenesis: Imbalance in the Renin-Angiotensin System Favors Lung Fibrosis. Frontiers in Cellular Infection Microbiology, 10, 340. https://doi.org/10.3389/fcimb.2020.00340
 | 
                            
                                
                                    | [151] | Cereceda, R. and Beswick, E. (2020) A Supercomputer Analysed Data on COVID-19 and Helped Come Up with This New Hypothesis. Euronews. https://www.euronews.com/2020/09/05/a-supercomputer-analysed-data-on-covid-19-and-helped-come-up-
 with-this-new-hypothesis
 | 
                            
                                
                                    | [152] | Kaplan, A.P. (2008) Angioedema. WAO Journal, 1, 103-113. https://doi.org/10.1097/WOX.0b013e31817aecbe
 | 
                            
                                
                                    | [153] | Meini, S., Zanichelli, A., Sbrojavacca, R., et al. (2020) Understanding the Pathophysiology of COVID-19? Could the Contact System Be the Key? Frontiers in Immunology, 11, 2014. https://doi.org/10.3389/fimmu.2020.02014
 | 
                            
                                
                                    | [154] | LaRusch, G.A., Mahdi, F., Shariat-Madar, Z., Adams, G., Sitrin, R.G., Zhang, W.M., et al. (2010) Factor XII Stimulates ERK1/2 and Akt through uPAR, Integrins, and the EGFR to Initiate Angiogenesis. Blood, 115, 5111-5120. https://doi.org/10.1182/blood-2009-08-236430
 | 
                            
                                
                                    | [155] | Wujak, L., Didiasova, M., Zakrzewicz, D., Frey, H., Schasfer, L. and Wygrecka, M. (2015) Heparan Sulfate Proteoglycans Mediate Factor XIIa Binding to the Cell Surface. Journal of Biological Chemistry, 290, 7027-7039. https://doi.org/10.1074/jbc.M114.606343
 | 
                            
                                
                                    | [156] | Yong, S.J. (2020) Overlooked Receptors in Covid-19: What ACE2 Alone Cannot Explain. https://medium.com/microbial-instincts/overlooked-receptors-could-explain-quirks-of-covid-19-that-ace2-
 alone-cannot-9470817f59d0
 | 
                            
                                
                                    | [157] | Wang, K., Chen, W., Zhou, Y.-S., et al. (2020) SARS-CoV-2 Invades Host Cells via a Novel Route: CD147-Spike Protein. https://doi.org/10.1101/2020.03.14.988345
 | 
                            
                                
                                    | [158] | Ulrich, H. and Pillat, M.M. (2020) CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Reviews and Reports, 16, 434-440. https://doi.org/10.1007/s12015-020-09976-7
 | 
                            
                                
                                    | [159] | (2020) CD147 a New Target of SARS-CoV-2 Invasion. Cusabio. https://www.cusabio.com/c-20985.html
 | 
                            
                                
                                    | [160] | Xiong, L., Edwards, C.K. and Zhou, L. (2014) The Biological Function and Clinical Utilization of CD147 in Human Diseases: A Review of the Current Scientific Literature. International Journal of Molecular Sciences, 15, 17411-17441. https://doi.org/10.3390/ijms151017411
 | 
                            
                                
                                    | [161] | Luan, J., Zhao, Y., Zhang, Y., et al. (2017) CD147 Blockade as a Potential and Novel Treatment of Graft Rejection. Molecular Medicine Reports, 16, 4593-4602. https://doi.org/10.3892/mmr.2017.7201
 | 
                            
                                
                                    | [162] | Kendrick, A.A., Schafer, J., Dzieciatkowska, M., et al. (2016) CD147: A Small Molecule Transporter Ancillary Protein at the Crossroad of Multiple Hallmarks of Cancer and Metabolic Reprogramming. Oncotarget, 8, 6742-6762. https://doi.org/10.18632/oncotarget.14272
 | 
                            
                                
                                    | [163] | Li, X., Zhang, Y., Ma, W., et al. (2020) Enhanced Glucose Metabolism Mediated by CD147 Contributes to Immunesupression in Hepatocellular Carcinoma. Cancer Immunology, Immunotherapy, 69, 535-548. https://doi.org/10.1007/s00262-019-02457-y
 | 
                            
                                
                                    | [164] | Huang, Q., Li, J., Xing, J., Li, W., Li, H., Ke, X., Zhang, J., Ren, T., Shang, Y., Yang, H., Jiang, J. and Chen, Z. (2014) CD147 Promotes Reprogramming of Glucose Metabolism and Cell Proliferation in HCC Cells by Inhibiting p53-Dependent Signaling Pathway. Journal of Hepatology, 61, 859-866. https://doi.org/10.1016/j.jhep.2014.04.035
 | 
                            
                                
                                    | [165] | Vassilaki, N. and Frakolaki, E. (2017) Virus-Host Interactions under Hypoxia. Microbes and Infection, 19, 193-203. https://doi.org/10.1016/j.micinf.2016.10.004
 | 
                            
                                
                                    | [166] | Domingo, P., Mur, I., Pomar, V., Corominas, H., Casademont, J. and de Benito, N. (2020) The Four Horsemen of a Viral Apocalypse: The Pathogenesis of SARS-CoV-2 Infection (COVID-19). EBioMedicine, 58, Article ID: 102887. https://doi.org/10.1016/j.ebiom.2020.102887
 | 
                            
                                
                                    | [167] | Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J. and Jiang, S. (2009) The Spike Protein of SARS-CoV—A Target for Vaccine and Therapeutic Development. Nature Reviews Microbiology, 7, 226-236. https://doi.org/10.1038/nrmicro2090
 | 
                            
                                
                                    | [168] | Walls, A.C., Park, Y.-J., Tortorici, M.A., et al. (2020) Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 180, 281-292. https://doi.org/10.1016/j.cell.2020.02.058
 | 
                            
                                
                                    | [169] | Szasz, O., Szigeti, G.P. and Szasz, A. (2019) The Intrinsic Self-Time of Biosystems. Open Journal of Biophysics, 9, 131-145. | 
                            
                                
                                    | [170] | Longo, G. and Montevil, M. (2014) Perspectives on Organisms, Biological Time, Symmetries and Singularities. Springer-Verlag, Berlin, Heidelberg. | 
                            
                                
                                    | [171] | Wang, F., Zhang, H. and Sun, Z. (2020) The Laboratory Tests and Host Immunity of COVID-19 Patients with Different Severity of Illness. JCI Insight, 5, e137799. https://doi.org/10.1172/jci.insight.137799
 | 
                            
                                
                                    | [172] | Banoun, H. (2020) Evolution of SARS-CoV-2 in Relation to the Host Immune System. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3637909
 https://doi.org/10.2139/ssrn.3637909
 | 
                            
                                
                                    | [173] | Sun, X., Wang, T., Cai, D., et al. (2020) Cytokine Storm in the Early Stages of Covid-19 Pneumonia. Cytokine and Growth Factor Reviews, 53, 38-42. https://doi.org/10.1016/j.cytogfr.2020.04.002
 | 
                            
                                
                                    | [174] | McMillan, P. and Uhal, B.D. (2020) COVID-19—A Theory of Autoimmunity to ACE-2. MOJ Immunology, 7, 17-19. | 
                            
                                
                                    | [175] | Mahmudpour, M., Roozbeh, J., Kehavarz, M., et al. (2020) COVID-19 Cytokine Storm—The Anger of Inflammation. Cytokine, 133, Article ID: 155151. https://doi.org/10.1016/j.cyto.2020.155151
 | 
                            
                                
                                    | [176] | Channappanavar, R. and Perlman, S. (2017) Pathogenic Human Coronavirus Infections: Causes and Consequences of Citokine Storm and Immunopathology. Seminars in Immunopathology, 39, 529-539. https://doi.org/10.1007/s00281-017-0629-x
 | 
                            
                                
                                    | [177] | Maisch, B. (2019) Cardio-Immunology of Myocarditis: Focus on Immune Mechanisms and Treatment Options. Frontiers in Cardiovascular Medicine, 6, 48. https://doi.org/10.3389/fcvm.2019.00048
 | 
                            
                                
                                    | [178] | Anoop, U.R. and Verma, K. (2020) Pulmonary Edema in COVID19—A Neural Hypothesis. ACS Chemical Neuroscience, 11, 2048-2050. https://doi.org/10.1021/acschemneuro.0c00370
 | 
                            
                                
                                    | [179] | MsGrath, B.A., Wallace, S. and Goswamy, J. (2020) Laryngeal Oedema Associated with COVID-19 Complicating Airway Management. Anaesthesia, 75, 972. https://doi.org/10.1111/anae.15092
 | 
                            
                                
                                    | [180] | Tse, G.M.-K., To, K.-F., Chan, P.K.-S., et al. (2014) Pulmonary Pathological Features in Coronavirus Associated Severe Acute Respiratory Syndrome (SARS). Journal of Clinical Pathology, 57, 260-265. https://doi.org/10.1136/jcp.2003.013276
 | 
                            
                                
                                    | [181] | Luks, A.M., Freer, L., Grissom, C.K., et al. (2020) COVID-19 Lung Injury Is Not High Altitude Pulmonary Edema. High Altitude Medicine and Biology, 21, 192-193. https://doi.org/10.1089/ham.2020.0055
 | 
                            
                                
                                    | [182] | Zhu, Z., Tang, J., Chai, X., et al. (2020) How to Differentiate COVID-19 Pneumonia from Heart Failure with Computed Tomography at Initial Medical Contact during Epidemic Period. https://doi.org/10.1101/2020.03.04.20031047
 | 
                            
                                
                                    | [183] | Gattinoni, L., Coppola, S., Cressoni, M., Busana, M., Rossi, S. and Chiumello, D. (2020) Covid-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 201, 1299-1300. https://doi.org/10.1164/rccm.202003-0817LE
 | 
                            
                                
                                    | [184] | Okada, H., Yoshida, S., Hara, A., et al. (2020) Vascular Endothelial Injury Exacerbates Coronavirus Disease 2019: The Role of Endothelial Glycocalyx Protection. Microcirculation, e12654. https://doi.org/10.1111/micc.12654
 | 
                            
                                
                                    | [185] | Lang, M., Som, A., Carey, D., et al. (2020) Pulmonary Vascular Manifestations of COVID-19 Pneumonia. Radiology: Cardiothoracic Imaging, 2, e200277. https://doi.org/10.1148/ryct.2020200277
 | 
                            
                                
                                    | [186] | Coperchini, F., Chiovato, L., Croce, L., et al. (2020) The Cytokine Storm in COVID-19: An Overview of the Involvement of the Chemokine/Chemokine-Receptor System. Cytokine and Growth Factor Reviews, 53, 25-32. https://doi.org/10.1016/j.cytogfr.2020.05.003
 | 
                            
                                
                                    | [187] | Maisch, B. (2020) SARS-CoV-2 as Potential Cause of Cardiac Inflammation and Heart Failure. Is It the Virus, Hyperinflammation, or MODS? Herz, 45, 321-322. https://doi.org/10.1007/s00059-020-04925-z
 | 
                            
                                
                                    | [188] | Huertas, A., Montani, D., Savale, L., et al. (2020) Endothelial Cell Dysfunction: A Major Player in SARS-CoV-2 Infection (COVID-19)? European Respiratory Journal, 56, Article ID: 2001634. https://doi.org/10.1183/13993003.01634-2020
 | 
                            
                                
                                    | [189] | Arteriograph, Interesting Facts—Innovative Method to Ease Arterial Stiffness Measurement. https://www.tensiomed.com/interesting-facts
 | 
                            
                                
                                    | [190] | De Andrea, M., Ravera, R., Gioia, D., Gariglio, M. and Landolfo, S. (2002) The Interferon System: An Overview. European Journal of Paediatric Neurology, 6, A41-A46. https://doi.org/10.1053/ejpn.2002.0573
 | 
                            
                                
                                    | [191] | Parkin, J. and Cohen, B. (2001) An Overview of the Immune System. The Lancet, 357, 1777-1789. https://doi.org/10.1016/S0140-6736(00)04904-7
 | 
                            
                                
                                    | [192] | Liu, J., Zheng, X., Tong, Q., Li, W., Wang, B., Sutter, K., et al. (2020) Overlapping and Discrete Aspects of the Pathology and Pathogenesis of the Emerging Human Pathogenic Coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. Journal of Medical Virology, 92, 491-494. https://doi.org/10.1002/jmv.25709
 | 
                            
                                
                                    | [193] | Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020) Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. The Lancet Respiratory Medicine, 8, 420-422. https://doi.org/10.1016/S2213-2600(20)30076-X
 | 
                            
                                
                                    | [194] | Pacha, O., Sallman, M.A. and Evans, S.E. (2020) COVID-19: A Case for Inhibiting IL-17? Nature Reviews, Immunology, 20, 345-346. https://doi.org/10.1038/s41577-020-0328-z
 | 
                            
                                
                                    | [195] | Haller, O., Kochs, G. and Weber, F. (2007) Interferon, Mx, and Viral Countermeasures. Cytokine & Growth Factor Reviews, 18, 425-433. https://doi.org/10.1016/j.cytogfr.2007.06.001
 | 
                            
                                
                                    | [196] | Seder, R.A., Gazzinelli, R., Sher, A. and Paul, W.E. (1993) Interleukin 12 Acts Directly on CD4+ T Cells to Enhance Priming for Interferon γ Production and Diminishes Interleukin 4 Inhibition of Such Priming. Proceedings of the National Academy of Sciences of the United States of America, 90, 10188-10192. https://doi.org/10.1073/pnas.90.21.10188
 | 
                            
                                
                                    | [197] | Karupiah, G., Xie, Y.-W., Buller, M.L., et al. (1993) Inhibition of Viral Replication by Interferon-γ-Induced Nitric Oxide Synthase. Science, 261, 1445-1448. https://doi.org/10.1126/science.7690156
 | 
                            
                                
                                    | [198] | Hu, X., Li, W.P., Meng, C., et al. (2003) Inhibition of IFN-γ Signaling by Glucocorticoids. The Journal of Immunology, 170, 4833-4839. https://doi.org/10.4049/jimmunol.170.9.4833
 | 
                            
                                
                                    | [199] | Liu, P.P., Blet, A., Symth, D., et al. (2020) The Science Underlying COVID-19. Circulation, 142, 68-78. https://doi.org/10.4049/jimmunol.170.9.4833
 | 
                            
                                
                                    | [200] | Ong, E.Z., Chan, Y.F.Z., Leong, W.Y., Lee, N.M.Y., Kalimuddin, S., Mohideen, S.M.H., Chan, K.S., Tan, A.T., Bertoletti, A., Ooi, E.E. and Low, J.G.H. (2020) A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host & Microbe, 27, 879-882. https://doi.org/10.1016/j.chom.2020.03.021
 | 
                            
                                
                                    | [201] | Caruana, G., Croxatto, A., Coste, A.T., et al. (2020) Diagnostic Strategies for SARS-CoV-2 Infection and Interpretation of Microbiological Results. Clinical Microbiology and Infection, 26, 1178-1182. https://doi.org/10.1016/j.cmi.2020.06.019
 | 
                            
                                
                                    | [202] | Skevaki, C., Fragkou, P.C., Cheng, C., et al. (2020) Laboratory Characteristics of Patients Infected with the Novel SARS-CoV-2 Virus. Journal of Infection, 81, 205-212. https://doi.org/10.1016/j.jinf.2020.06.039
 | 
                            
                                
                                    | [203] | Ruiz de Morales, J.M.G., Puig, L., Dauden, E., et al. (2019) Critical Role of Interleukin (IL)-17 in Inflammatory and Immune Disorders: An Updated Review of the Evidence Focusing in Controversies. Autoimmunity Reviews. https://doi.org/10.1016/j.autrev.2019.102429
 | 
                            
                                
                                    | [204] | Fu, Y., Cheng, Y. and Wu, Y. (2020) Understanding SARS CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virologica Sinica, 35, 266-271. https://doi.org/10.1007/s12250-020-00207-4
 | 
                            
                                
                                    | [205] | Yale University (2020) Common Cold Combats Influenza. https://healthcare-in-europe.com/en/news/common-cold-combats-influenza.html
 | 
                            
                                
                                    | [206] | Wu, A., Mihaylova, V.T., Landry, M.L., et al. (2020) Interference between Rhinovirus and Influenza A Virus: A Clinical Data Analysis and Experimental Infection Study. The Lancet Microbe. | 
                            
                                
                                    | [207] | Turner, R.B., Felton, A., Kosak, K., et al. (1986) Prevention of Experimental Coronavirus Colds with Intranasal Alpha-2b Interferon. The Journal of Infectious Diseases, 154, 443-447. https://doi.org/10.1093/infdis/154.3.443
 | 
                            
                                
                                    | [208] | Manduffie, D. (2020) Scientists Say the Common Cold Can Keep the Flu at Bay. Can It Do the Same for Covid-19? https://www.courthousenews.com/scientists-say-the-common-cold-can-keep-the-flu-at-bay-can-it-do
 -the-same-for-covid-19
 | 
                            
                                
                                    | [209] | Sette, A. and Crotty, S. (2020) Pre-Existing Immunity to SARS-CoV-2: The Knowns and Unknowns. Nature Reviews, Immunology. https://doi.org/10.1038/s41577-020-00430-w
 | 
                            
                                
                                    | [210] | Foxman, E.F., Storer, J.A., Fitzgerald, M.E., et al. (2015) Temperature-Dependent Innate Defense against the Common Cold Virus Limits Viral Replication at Warm Temperature in Mouse Airway Cells. PNAS, 112, 827-832. https://doi.org/10.1073/pnas.1411030112
 | 
                            
                                
                                    | [211] | Brenner, I.K.M., Castellani, J.W., Gabaree, C., et al. (1999) Immune Changes in Humans during Cold Exposure: Effects of Prior Heating and Exercise. Journal of Applied Physiology, 87, 699-710. https://doi.org/10.1152/jappl.1999.87.2.699
 | 
                            
                                
                                    | [212] | Kamat, S. and Kumari, M. (2020) BCG against SARS-CoV-2: Second Youth of an Old Age Vaccine? Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2020.01050
 | 
                            
                                
                                    | [213] | Luke, A., O’Neill, J. and Netea, M.G. (2020) BCG-Induced Trained Immunity: Can It Offer Protection against COVID-19? Nature Reviews/Immunology. https://doi.org/10.1038/s41577-020-0337-y
 | 
                            
                                
                                    | [214] | Chumakov, K., Benn, C.S., Aaby, P., Kottilil, S. and Gallo, R. (2020) Can Existing Live Vaccines Prevent COVID-19? Science, 368, 1187-1188. https://doi.org/10.1126/science.abc4262
 | 
                            
                                
                                    | [215] | Baragona, S. (2020) TB, Measles, Polio Vaccines Might Fight COVID-19. https://www.voanews.com/covid-19-pandemic/tb-measles-polio-vaccines-might-fight-covid-19
 | 
                            
                                
                                    | [216] | Fidel, P.L. and Noverr, M.C. (2020) Could an Unrelated Live Attenuated Vaccine Serve as a Preventive Measure to Dampen Septic Inflammation Associated with COVID-19 Infection? mBio, 11, e00907-20. https://doi.org/10.1128/mBio.00907-20
 | 
                            
                                
                                    | [217] | Imami, A.S., O’Donovan, S.M., Creeden, J.F., Wu, X., Eby, H., McCullumsmith, C.B., Uvnäs-Moberg, K., McCullumsmith, R.E. and Andari, E. (2020) Oxytocin’s Anti-Inflammatory and Proimmune Functions in COVID-19: A Transcriptomic Signature-Based Approach. Physiological Genomics, 52, 401-407. https://doi.org/10.1152/physiolgenomics.00095.2020
 | 
                            
                                
                                    | [218] | Voronov, S., Zueva, N., Orlov, V., et al. (2002) Temperature-Induced Selective Death of the C-Domain within Angiotensin-Converting Enzyme Molecule. FEBS Letters, 522, 77-82. https://doi.org/10.1016/S0014-5793(02)02888-0
 | 
                            
                                
                                    | [219] | Tharakan, S, Nomoto, K., Miyashita, S., et al. (2020) Body Temperature Correlates with Mortality in COVID-19 Patients. Critical Care, 24, 298. https://doi.org/10.1186/s13054-020-03045-8
 | 
                            
                                
                                    | [220] | Kang, D. and Ellgen, C. (2020) The Role of Temperature in COVID-19 Disease Severity and Transmission Rates. http://www.preprints.org
 https://doi.org/10.20944/preprints202005.0070.v1
 | 
                            
                                
                                    | [221] | Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science, Heidelberg. http://www.springer.com/gp/book/9789048194971
 https://doi.org/10.1007/978-90-481-9498-8
 | 
                            
                                
                                    | [222] | Chi, K.-H. (2020) Tumour-Directed Immunotherapy: Clinical Results of Radiotherapy with Modulated Electro-Hyperthermia. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Newcastle upon Tyne, Ch. 12, 206-226. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
 | 
                            
                                
                                    | [223] | Pang, L.K.C. (2012) Clinical Research on Integrative Treatment of Colon Carcinoma with Oncothermia and Clifford TCM Immune Booster. Oncothermia Journal, 5, 24-41. | 
                            
                                
                                    | [224] | Krenacs, T. and Benyo, Z. (2017) Tumor Specific Stress and Immune Response Induced by Modulated Electrohyperthermia in Relation to Tumor Metabolic Profiles. Oncothermia Journal, 20, 264-272. | 
                            
                                
                                    | [225] | Szasz, A.M., Minnaar, C.A., Szentmartoni, Gy., et al. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Frontiers in Oncology, 9, Article No. 1012. https://doi.org/10.3389/fonc.2019.01012
 | 
                            
                                
                                    | [226] | Szasz, A.M., Arkosy, P., Arrojo, E.E., et al. (2020) Guidelines for Local Hyperthermia Treatment in Oncology. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Newcastle upon Tyne, Ch. 2, 32-71. | 
                            
                                
                                    | [227] | Minnaar, C.A., Kotzen, J.A., Naidoo, T., et al. (2020) Analysis of the Effects of mEHT on the Treatment-Related Toxicity and Quality of Life of HIV-Positive Cervical Cancer Patients. International Journal of Hyperthermia, 37, 263-272. https://doi.org/10.1080/02656736.2020.1737253
 | 
                            
                                
                                    | [228] | Minnaar, C.A., Szasz, A.M., Arrojo, E., Lee, S.-Y., Giorentini, G., Borbenyi, E., et al. (2020) Summary and Update of the Method Modulated Electro-Hyperthermia. Oncothermia Journal, Special Edition, 49-130. https://oncotherm.com/sites/oncotherm/files/2020-09/specialedition01_1.pdf
 | 
                            
                                
                                    | [229] | Szasz, A. (2020) Towards the Immunogenic Hyperthermic Action: Modulated Electro-Hyperthermia. Clinical Oncology and Research, Science Repository, 3, 5-6. https://doi.org/10.31487/j.COR.2020.09.07
 | 
                            
                                
                                    | [230] | Minnaar, C.A., Baeyens, A., Aeni, O.A., et al. (2019) Defining Characteristics of Nodal Disease on PET/CT Scans in Patients with HIV-Positive and -Negative Locally Advanced Cervical Cancer in South Africa. Tomography, 5, 339-345. https://doi.org/10.18383/j.tom.2019.00017
 | 
                            
                                
                                    | [231] | Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2019) The Effect of Modulated Electro-Hyperthermia on Local Disease Control in HIV-Positive and -Negative Cervical Cancer Women in South Africa: Early Results from a Phase III Randomized Controlled Trial. PLoS ONE, 14, e0217894. https://doi.org/10.1371/journal.pone.0217894
 | 
                            
                                
                                    | [232] | Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, Taylor & Francis Group, Boca Raton, 323-336. | 
                            
                                
                                    | [233] | Szasz, A. and Szasz, O. (2013) Oncothermia Protocol. Oncothermia Journal, 8, 13-45. https://doi.org/10.1155/2013/159570
 https://oncotherm.com/sites/oncotherm/files/2019-10/Oncothermia%20protocol.pdf
 | 
                            
                                
                                    | [234] | Minnaar, C.A., Szasz, A.M., Arrojo, E., Lee, S.-Y., Giorentini, G., Borbenyi, E., et al. (2020) Summary and Update of the Method Modulated Electro-Hyperthermia. Oncothermia Journal, Special Edition, 49-130. https://oncotherm.com/sites/oncotherm/files/2020-09/specialedition01_1.pdf
 | 
                            
                                
                                    | [235] | Szasz, O., Szasz, A.M. Minnaar, C. and Szasz, A. (2017) Heating Preciosity—Trends in Modern Oncological Hyperthermia. Open Journal of Biophysics, 7, 116-144. https://doi.org/10.4236/ojbiphy.2017.73010
 | 
                            
                                
                                    | [236] | Sanchez, E.L. and Lagunoff, M. (2015) Viral Activation of Cellular Metabolism. Virology, 479-480, 609-618. https://doi.org/10.1016/j.virol.2015.02.038
 | 
                            
                                
                                    | [237] | Mayer, K.A., Stöckl, J., Zlabinger, G.J., et al. (2019) Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Frontiers in Immunology, 10, 1533. https://doi.org/10.3389/fimmu.2019.01533
 | 
                            
                                
                                    | [238] | Thaker, S.K., Ch’ng, J. and Christofk, H.R. (2019) Viral Hijacking of Cellular Metabolism. BMC Biology, 17, 59. https://doi.org/10.1186/s12915-019-0678-9
 | 
                            
                                
                                    | [239] | Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9. https://doi.org/10.4172/0974-8369.1000247
 | 
                            
                                
                                    | [240] | Szasz, O. and Szasz, A. (2014) Oncothermia—Nano-Heating Paradigm. Journal of Cancer Science and Therapy, 6, 4. https://doi.org/10.4172/1948-5956.1000259
 | 
                            
                                
                                    | [241] | Hegyi, G., Szigeti, G.P. and Szasz, A. (2013) Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 672873. https://doi.org/10.1155/2013/672873
 | 
                            
                                
                                    | [242] | Conti, C., De Marco, A., Mastromarino, P., et al. (1999) Antiviral Effect of Hyperthermic Treatment in Rhinovirus Infection. Antimicrobial Agents and Chemotherapy, 43, 822-829. https://doi.org/10.1128/AAC.43.4.822
 | 
                            
                                
                                    | [243] | Szasz, A., Vincze, Gy., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extracellular Hyperthermia. Magneto- and Electro-Biology, 22, 103-115. https://doi.org/10.1081/JBC-120024620
 | 
                            
                                
                                    | [244] | Szasz, O., Szasz, A.M., Minnaar, C. and Szasz, A. (2017) Heating Preciosity—Trends in Modern Oncological Hyperthermia. Open Journal of Biophysics, 7, 116-144. https://doi.org/10.4236/ojbiphy.2017.73010
 | 
                            
                                
                                    | [245] | Wust, P., Kortum, B., Strauss, U., Nadobny, J., Zschaeck, S., Beck, M., et al. (2020) Non-Thermal Effects of Radiofrequency Electromagnetic Fields. Scientific Reports, 10, Article No. 13488. https://doi.org/10.1038/s41598-020-69561-3
 | 
                            
                                
                                    | [246] | Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18
 | 
                            
                                
                                    | [247] | Szasz, O., Szigeti, Gy.P., Vancsik, T. and Szasz, A. (2018) Hyperthermia Dosing and Depth of Effect. Open Journal of Biophysics, 8, 31-48. https://doi.org/10.4236/ojbiphy.2018.81004
 | 
                            
                                
                                    | [248] | Simons, K. and Sampaio, L. (2011) Membrane Organization and Lipid Rafts. Cold Spring Harbor Perspectives in Biology, 3, a004697. https://doi.org/10.1101/cshperspect.a004697
 | 
                            
                                
                                    | [249] | Simons, K. and Toomre, D. (2000) Lipid Rafts and Signal Transduction. Nature Reviews Molecular Cell Biology, 1, 31-41. https://doi.org/10.1038/35036052
 | 
                            
                                
                                    | [250] | Rajendran, L. and Simons, K. (2005) Lipid Rafts and Membrane Dynamics. Journal of Cell Science, 118, 1099-1102. https://doi.org/10.1242/jcs.01681
 | 
                            
                                
                                    | [251] | Vincze, Gy., Szigeti, Gy., Andocs, G. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles. Biology and Medicine, 7, 4. | 
                            
                                
                                    | [252] | Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016
 | 
                            
                                
                                    | [253] | Prasad, B., Kim, S., Cho, W., et al. (2018) Effect of Tumor Properties on Energy Absorption, Temperature Mapping, and Thermal Dose in 13,56-MHz Radiofrequency Hyperthermia. Journal of Thermal Biology, 74, 281-289. https://doi.org/10.1016/j.jtherbio.2018.04.007
 | 
                            
                                
                                    | [254] | Nagy, G., Meggyeshazi, N. and Szasz, O. (2013) Deep Temperature Measurements in Oncothermia Processes. Conference Papers in Medicine, 2013, Article ID: 685264. https://doi.org/10.1155/2013/685264
 | 
                            
                                
                                    | [255] | Csoboz, B., Balogh, G.E., Kusz, E., et al. (2013) Membrane Fluidity Matters: Hyperthermia from the Aspects of Lipids and Membranes. International Journal of Hyperthermia, 29, 491-499. https://doi.org/10.3109/02656736.2013.808765
 | 
                            
                                
                                    | [256] | Li, G.-M., Li, Y.-G., Yamate, M., et al. (2007) Lipid Rafts Play an Important Role in the Early Stage of Severe Acute Respiratory Syndrome-Coronavirus Life Cycle. Microbes and Infection, 9, 96-102. https://doi.org/10.1016/j.micinf.2006.10.015
 | 
                            
                                
                                    | [257] | Manes, S., del Real, G. and Martinez, A. (2003) Pathogens: Raft Hijackers. Nature Reviews Immunology, 3, 557-568. https://doi.org/10.1038/nri1129
 | 
                            
                                
                                    | [258] | Takahashi, T. and Suzuki, T. (2009) Role of Membrane Rafts in Viral Infection. The Open Dermatology Journal, 3, 178-194. https://doi.org/10.2174/1874372200903010178
 | 
                            
                                
                                    | [259] | Baglivo, M., Baronio, M., Natalini, G., et al. (2020) Natural Small Molecules as Inhibitors of Coronavirus Lipid Dependent Attachment to Host Cells: A Possible Strategy for Reducing SARS-COV-2 Infectivity? Acta BioMedica, 91, 161-164. | 
                            
                                
                                    | [260] | Wang, T.T., Lien, C.Z., Liu, S., et al. (2020) Effective Heat Inactivation of SARS-CoV-2. https://doi.org/10.1101/2020.04.29.20085498
 | 
                            
                                
                                    | [261] | Kiss, B., Kis, Z., Palyi, B., et al. (2020) Topography, Spike Dynamics and Nanomechanics of Individual Native SARS-CoV-2 Virions. https://doi.org/10.1101/2020.09.17.302380
 | 
                            
                                
                                    | [262] | Lee, Y.-N., Chen, L.-K., Ma, H.-C., et al. (2005) Thermal Aggregation of SARS-CoV Membrane Protein. Journal of Virological Methods, 129, 152-161. https://doi.org/10.1016/j.jviromet.2005.05.022
 | 
                            
                                
                                    | [263] | Maruyama, H., Kimura, T., Liu, H., et al. (2018) Influenza Virus Replication Raises the Temperature of Cells. Virus Research. https://doi.org/10.1016/j.virusres.2018.09.011
 | 
                            
                                
                                    | [264] | De Maio, A. (1999) Heat Shock Proteins: Facts, Thoughts, and Dreams. Shock, 11, 1-12. https://doi.org/10.1097/00024382-199901000-00001
 | 
                            
                                
                                    | [265] | Feder, M.E. and Hofmann, G.E. (1999) Heat-Shock Proteins, Molecular Chaperones, and the Stress Response: Evolutionary and Ecological Physiology. Annual Review of Physiology, 61, 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
 | 
                            
                                
                                    | [266] | Santoro, M.G. (2000) Heat Shock Factors and the Control of the Stress Response. Biochemical Pharmacology, 59, 55-63. https://doi.org/10.1016/S0006-2952(99)00299-3
 | 
                            
                                
                                    | [267] | Blank, M. (2012) Evidence for Stress Response. https://bioinitiative.org/wp-content/uploads/pdfs/sec07_2007_Evidence_for
 _Stress_Response.pdf
 | 
                            
                                
                                    | [268] | Milani, A., Basirnejad, M. and Bolhassani, A. (2019) Heat-Shock Proteins in Diagnosis and Treatment: An Overview of Different Biochemical and Immunological Functions. Immunotherapy, 11, 215-239. https://doi.org/10.2217/imt-2018-0105
 | 
                            
                                
                                    | [269] | Kregel, K.C. (2002) Molecular Biology of Thermoregulation Invited Review: Heat Shock Proteins: Modifying Factors in Physiological Stress Responses and Acquired Thermotolerance. Journal of Applied Physiology, 92, 2177-2186. https://doi.org/10.1152/japplphysiol.01267.2001
 | 
                            
                                
                                    | [270] | De Marco, A. and Santoro, M.G. (1193) Antiviral Effect of Short Hyperthermic Treatment at Specific Stages of Vesicular Stomatitis Virus Replication Cycle. Journal of General Virology, 74, 1685-1690. https://doi.org/10.1099/0022-1317-74-8-1685
 | 
                            
                                
                                    | [271] | Yerusameli, A., Karman, S. and Lwoff, A. (1982) Treatment of Perennial Allergic Rhinitis by Local Hyperthermia. Proceedings of the National Academy of Sciences of the United States of America, 79, 4766-4769. https://doi.org/10.1073/pnas.79.15.4766
 | 
                            
                                
                                    | [272] | Roulston, A., Marcellus, R.C. and Branton, P.E. (1999) Viruses and Apoptosis. Annual Review of Microbiology, 53, 577-628. https://doi.org/10.1146/annurev.micro.53.1.577
 | 
                            
                                
                                    | [273] | Hardwick, J.M. (2001) Apoptosis in Viral Pathogenesis. Cell Death & Differentiation, 8, 109-110. https://doi.org/10.1038/sj.cdd.4400820
 | 
                            
                                
                                    | [274] | Benedict, C.A., Norris, P.S. and Ware, C.F. (2002) To Kill or Be Killed: Viral Evasion of Apoptosis. Nature Immunology, 3, 1013-1018. https://doi.org/10.1038/ni1102-1013
 | 
                            
                                
                                    | [275] | Wan, Y., Song, D., Li, H., et al. (2020) Stress Proteins: The Biological Functions in Virus Infection, Present and Challenges for Target-Based Antiviral Drug Development. Signal Transduction and Targeted Therapy, 5, 125. https://doi.org/10.1038/s41392-020-00233-4
 | 
                            
                                
                                    | [276] | Ren, L., Yang, R., Gou, L., et al. (2005) Apoptosis Induced by the SARS-Associated Coronavirus in Vero Cells Is Replication-Dependent and Involves Caspase. DNA and Cell Biology, 24, 496-502. https://doi.org/10.1089/dna.2005.24.496
 | 
                            
                                
                                    | [277] | Fung, T.S. and Liu, D.X. (2014) Coronavirus Infection, ER Stress, Apoptosis and Innate Immunity. Frontiers in Microbiology, 5, 296. https://doi.org/10.3389/fmicb.2014.00296
 | 
                            
                                
                                    | [278] | Tan, Y.-X., Tan, T.H.P., Lee, M.J.-R., et al. (2007) Induction of Apoptosis by the Severe Acute Respiratory Syndrome Coronavirus 7a Protein Is Dependent on Its Interaction with the Bcl-XL Protein. Journal of Virology, 81, 6346-6355. https://doi.org/10.1128/JVI.00090-07
 | 
                            
                                
                                    | [279] | Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electro-Magnetic Field in Tumor Cell Killing, Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie und Onkologie, 185, 120-126. https://doi.org/10.1007/s00066-009-1903-1
 | 
                            
                                
                                    | [280] | Meggyeshazi, N., Andocs, G. and Krenacs, T. (2013) Programmed Cell Death Induced by Modulated Electro-Hyperthermia. Conference Papers in Medicine, 2013, Article ID: 187835. https://doi.org/10.1155/2013/249563
 | 
                            
                                
                                    | [281] | Cummins, N. and Badley, A. (2009) The Trail to Viral Pathogenesis: The Good, the Bad and the Ugly. Current Molecular Medicine, 9, 495-505. https://doi.org/10.2174/156652409788167078
 | 
                            
                                
                                    | [282] | Peteranderi, C. and Herold, S. (2017) The Impact of the Interferon/TNF-Related Apoptosis-Inducing Ligand Signaling Axis on Disease Progression in Respiratory Viral Infection and Beyond. Frontiers in Immunology, 8, 313. https://doi.org/10.3389/fimmu.2017.00313
 | 
                            
                                
                                    | [283] | Lugade, A.A., Sorensen, E.W., Gerber, S.A., Moran, J.P., Frelinger, J.G. and Lord, E.M. (2008) Radiation-Induced IFN-Gamma Production within the Tumor Microenvironment Influences Antitumor Immunity. The Journal of Immunology, 180, 3132-3139. https://doi.org/10.4049/jimmunol.180.5.3132
 | 
                            
                                
                                    | [284] | Tsang, Y.-W., Huang, C.-C., Yang, K.-L., Chi, M.-S., Chiang, H.-C., Wang, Y.-S., Andocs, G., Szasz, A., Li, W.-T. and Chi, K.-H. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMC Cancer, 15, 708. https://doi.org/10.1186/s12885-015-1690-2
 | 
                            
                                
                                    | [285] | Vancsik, T., Kovago, Cs., Kiss, E., et al. (2018) Modulated Electro-Hyperthermia Induced Loco-Regional and Systemic Tumor Destruction in Colorectal Cancer Allografts. Journal of Cancer, 9, 41-53. https://doi.org/10.7150/jca.21520
 | 
                            
                                
                                    | [286] | Meggyeshazi, N., Andocs, G., Balogh, L., et al. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 190, 815-822. https://doi.org/10.1007/s00066-014-0617-1
 | 
                            
                                
                                    | [287] | Andocs, G., Rehman, M.U., Zhao, Q.-L., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Discovery (Nature Publishing Group), 2, 16039. https://doi.org/10.1038/cddiscovery.2016.39
 | 
                            
                                
                                    | [288] | Forika, G., Balogh, A., Vancsik, T., Zalatnai, A., et al. (2020) Modulated Electro-Hyperthermia Resolves Radioresistance of Panc1 Pancreas Adenocarcinoma and Promotes DNA Damage and Apoptosis in Vitro. International Journal of Molecular Sciences, 21, 5100. https://pubmed.ncbi.nlm.nih.gov/32707717
 https://doi.org/10.3390/ijms21145100
 | 
                            
                                
                                    | [289] | Kao, P.H.-J., Chen, C.-H., Chang, Y.-W., et al. (2020) Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. Scientific Reports, 10, Article No. 8936. https://doi.org/10.1038/s41598-020-65823-2
 https://www.nature.com/articles/s41598-020-65823-2
 | 
                            
                                
                                    | [290] | Graner, M.W. (2016) HSP90 and Immune Modulation in Cancer. Advances in Cancer Research, 129, 191-224. https://doi.org/10.1016/bs.acr.2015.10.001
 | 
                            
                                
                                    | [291] | Murshid, A., Gong, J. and Calderwood, K. (2012) Role of Heat Shock Proteins in Antigen Cross Presentation. Frontiers in Immunology, 3, 63. https://doi.org/10.3389/fimmu.2012.00063
 | 
                            
                                
                                    | [292] | Yang, K.-L., Huang, C.-C., Chi, M.-S., Chiang, H.-C., Wang, Y.-S., Andocs, G., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092. https://doi.org/10.18632/oncotarget.11444
 | 
                            
                                
                                    | [293] | Meggyeshazi, N. (2015) Studies on Modulated Electrohyperthermia Induced Tumor Cell Death in a Colorectal Carcinoma Model. Thesis, Pathological Sciences Doctoral School, Semmelweis University, Budapest. http://repo.lib.semmelweis.hu/handle/123456789/3956
 | 
                            
                                
                                    | [294] | Andocs, G., Meggyeshazi, N., Balogh, L., et al. (2014) Upregulation of Heat Shock Proteins and the Promotion of Damage-Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modulated Electrohyperthermia. Cell Stress and Chaperones, 20, 37-46. https://doi.org/10.1007/s12192-014-0523-6
 | 
                            
                                
                                    | [295] | Qin, W., Akutsu, Y., Andocs, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379. https://doi.org/10.3892/or.2014.3500
 | 
                            
                                
                                    | [296] | Binder, R.J. (2014) Functions of Heat Shock Proteins in Pathways of the Innate and Adaptive Immune System. Journal of Immunology, 193, 5765-5771. https://doi.org/10.4049/jimmunol.1401417
 | 
                            
                                
                                    | [297] | Deffit, S.N. and Blum, J.S. (2015) A Central Role for HSC70 in Regulating Antigen Trafficking and MHC Class II Presentation. Molecular Immunology, 68, 85-88. https://doi.org/10.1016/j.molimm.2015.04.007
 | 
                            
                                
                                    | [298] | Hernandez, C., Huebener, P. and Schwabe, R.F. (2016) Damage-Associated Molecular Patterns in Cancer: A Double-Edged Sword. Oncogene, 35, 5931-5941. https://doi.org/10.1038/onc.2016.104
 | 
                            
                                
                                    | [299] | Keep, O., Galluzzi, L., Senovilla, L., et al. (2009) Viral Subversion of Immunogenic Cell Death. Cell Cycle, 8, 860-869. https://doi.org/10.4161/cc.8.6.7939
 | 
                            
                                
                                    | [300] | Klune, J.R., Dhuper, R., Cardinal, J., et al. (2008) HMGB1: Endogenous Danger Signaling. Molecular Medicine, 14, 476-484. https://doi.org/10.2119/2008-00034.Klune
 | 
                            
                                
                                    | [301] | Foel, D. (2007) Mechanisms of Disease: A “DAMP” View of Inflammatory Arthritis. Nature Clinical Practice Rheumatology, 3, 382-390. https://doi.org/10.1038/ncprheum0531
 | 
                            
                                
                                    | [302] | Bosteels, C., Neyt, K., Vanheerswynghels, M., et al. (2020) Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 52, 1039-1056. https://doi.org/10.1016/j.immuni.2020.04.005
 | 
                            
                                
                                    | [303] | Xu, Z., Yang, Y., Zhou, J., et al. (2019) Role of Plasma Calreticulin in the Prediction of Severity in Septic Patients. Disease Makers, 2019, Article ID: 8792640. https://doi.org/10.1155/2019/8792640
 | 
                            
                                
                                    | [304] | Gold, L.I., Eggleton, P., Sweetwyne, M.T., Van Duyn, L.B., Greives, M.R., Naylor, S.-M., Michalak, M. and Murphy-Ullrich, J.E. (2009) Calreticulin: Non-Endoplamic Reticulum Functions in Physiology and Disease. FASEB, 24, 665-683. https://doi.org/10.1096/fj.09-145482
 | 
                            
                                
                                    | [305] | Andersson, U., Ottestad, W. and Tracey, K.J. (2020) Extracellular HMGB1: A Therapeutic Target in Severe Pulmonary Inflammation Including COVID-19? Molecular Medicine, 26, 42. https://doi.org/10.1186/s10020-020-00172-4
 | 
                            
                                
                                    | [306] | Derer, A., Deloch, L., Rubner, Y., et al. (2015) Radio-Immunotherapy-Induced Immunogenic Cancer Cells as Basis for Induction of Systemic Anti-Tumor Immune Responses—Pre-Clinical Evidence and Ongoing Clinical Applications. Frontiers in Immunology, 6, 505. https://doi.org/10.3389/fimmu.2015.00505
 | 
                            
                                
                                    | [307] | Stagg, A.J. and Knight, S.C. (2001) Antigen-Presenting Cells. http://labs.icb.ufmg.br/lbcd/pages2/bernardo/Bernardo/Artigos/Antigen-presenting%20Cells.pdf
 https://doi.org/10.1038/npg.els.0000903
 | 
                            
                                
                                    | [308] | Chi, K.-H. (2018) Tumor-Directed Immunotherapy: Combined Radiotherapy and Oncothermia. Oncothermia Journal, 24, 196-235. | 
                            
                                
                                    | [309] | Holtmeier, W. and Kabelitz, D. (2005) γ δ T Cells Link Innate and Adaptive Immune Responses, Mechanisms of Epithelial Defense. Chemical Immunology and Allergy, 86, 151-183. https://doi.org/10.1159/000086659
 | 
                            
                                
                                    | [310] | Coronavirus and the Cytoskeleton, Cytoskeleton, Inc. https://www.cytoskeleton.com/coronavirus-newsletter
 | 
                            
                                
                                    | [311] | Simpson, C. and Yamauchi, Y. (2020) Microtubules in Influenza Virus Entry and Egress. Viruses, 12, 117-136. https://doi.org/10.3390/v12010117
 | 
                            
                                
                                    | [312] | Lv, X., Li, Z., Guan, J., Hu, S., Zhang, J., Lan, Y., Zhao, K., Lu, H., Song, D., He, H., Gao, F. and Hea, W. (2019) Porcine Hemagglutinating Encephalomyelitis Virus Activation of the Integrin a5b1-FAK-Cofilin Pathway Causes Cytoskeletal Rearrangement to Promote Its Invasion of N2a Cells. Journal of Virology, 93, e01736-18. https://doi.org/10.1128/JVI.01736-18
 | 
                            
                                
                                    | [313] | Rüdiger, A.-T., Mayrhofer, P., Ma-Lauer, Y., Pohlentz, G., Muthing, J., Brunn, von A. and Schwegmann-Wessels, C. (2016) Tubulins Interact with Porcine and Human S Proteins of the Genus Alphacoronavirus and Support Successful Assembly and Release of Infectious Viral Particles. Virology, 497, 185-197. https://doi.org/10.1016/j.virol.2016.07.022
 | 
                            
                                
                                    | [314] | Ward, B.M. (Yu2011) The Taking of the Cytoskeleton One Two Three: How Viruses Utilize the Cytoskeleton during Egress. Virology, 411, 244-250. https://doi.org/10.1016/j.virol.2010.12.024
 | 
                            
                                
                                    | [315] | Vincze, Gy., Szigeti, Gy.P. and Szasz, A. (2016) Reorganization of the Cytoskeleton. Journal of Advances in Biology, 9, 1872-1882. https://cirworld.com/index.php/jab/article/view/4059
 | 
                            
                                
                                    | [316] | Vincze, Gy. and Szasz, A. (2015) Reorganization of Actin Filaments and Microtubules by Outside Electric Field. Journal of Advances in Biology, 8, 1514-1518. | 
                            
                                
                                    | [317] | Marchetti, M. (2020) COVID-19-Driven Endothelial Damage: Complement, HIF-1, and ABL2 Are Potential Pathways of Damage and Targets for Cure. Annals of Hematology, 99, 1701-1707. https://doi.org/10.1007/s00277-020-04138-8
 | 
                            
                                
                                    | [318] | Whyte, M.K.B. and Walmsley, S.R. (2014) The Regulation of Pulmonary Inflammation by the Hypoxia-Inducible Factor-Hydroxylase Oxygen-Sensing Pathway. Annals of the American Thoracic Society, 11, S271-S276. https://doi.org/10.1513/AnnalsATS.201403-108AW
 | 
                            
                                
                                    | [319] | Zhang, R., Wu, Y., Zhao, M., et al. (2009) Role of HIF-1alpha in the Regulation ACE and ACE2 Expression in Hypoxic Human Pulmonary Artery Smooth Muscle Cells. American Journal of Physiology—Lung Cellular and Molecular Physiology, 297, L631-L640. https://doi.org/10.1152/ajplung.90415.2008
 | 
                            
                                
                                    | [320] | Arias-Reyes, C., Zubieta-DeUrioste, N., Poma-Machicao, L., et al. (2020) Does the Pathogenesis of SAR-CoV-2 Virus Decrease at High-Altitude? Respiratory Physiology & Neurobiology, 22, Article ID: 103443. https://doi.org/10.1016/j.resp.2020.103443
 | 
                            
                                
                                    | [321] | Joyce, K.E., Weaver, S.R. and Lucas, S.J.E. (2020) Geographic Components of SARS-CoV-2 Expansion: A Hypothesis. Journal of Applied Physiology, 129, 257-262. https://doi.org/10.1152/japplphysiol.00362.2020
 | 
                            
                                
                                    | [322] | Afsar, B., Kanbay, M. and Afsar, R.E. (2020) Hypoxia Inducible Factor-1 Protects against COVID-19: A Hypothesis. Medical Hypotheses, 143, Article ID: 109857. https://doi.org/10.1016/j.mehy.2020.109857
 | 
                            
                                
                                    | [323] | Rubio-Casillas, A. (2020) Does SARS CoV 2 Virus Induce Hypoxia to Increase Its Replication? | 
                            
                                
                                    | [324] | Kim, W., Kim, M.S., Kim, H.J., et al. (2017) Role of HIF-1α in Response of Tumors to a Combination of Hyperthermia and Radiation in Vivo. International Journal of Hyperthermia, 34, 276-283. https://doi.org/10.1080/02656736.2017.1335440
 | 
                            
                                
                                    | [325] | Mathivanan, S., Devesa, I., Changeux, J.-P., et al. (2016) Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors. Frontiers in Pharmacology, 7, 178. https://doi.org/10.3389/fphar.2016.00178
 | 
                            
                                
                                    | [326] | Jia, Y. and Lee, L.-Y. (2007) Role of TRPV Antagonists in Respiratory Diseases. Biochimica et Biophysica Acta, 1772, 915-927. https://doi.org/10.1016/j.bbadis.2007.01.013
 | 
                            
                                
                                    | [327] | Dietrich, A. (2019) Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options for Lung Disease. Pharmaceuticals, 12, 23. https://doi.org/10.3390/ph12010023
 | 
                            
                                
                                    | [328] | Kuebler, W.M., Jordt, S.-E. and Liedtke, W.B. (2020) Urgent Reconsideration of Lung Edema as a Preventable Outcome in COVID-19: Inhibition of TRPV4 Represents a Promising and Feasible Approach. American Journal of Physiology—Lung Cellular and Molecular Physiology, 318, L1239-L1243. https://doi.org/10.1152/ajplung.00161.2020
 | 
                            
                                
                                    | [329] | Lee, S.-Y., Kim, J.-H., Han, Y.-H., et al. (2018) The Effect of Modulated Electro-Hyperthermia on Temperature and Blood Flow in Human Cervical Carcinoma. International Journal of Hyperthermia. https://doi.org/10.1080/02656736.2018.1423709
 | 
                            
                                
                                    | [330] | Batawi, S., Tarazan, N., Al-Raddadi, R., et al. (2019) Quality of Life Reported by Survivors after Hospitalization for Middle East Respiratory Syndrome (MERS). Health and Quality of Life Outcomes, 17, 101. https://doi.org/10.1186/s12955-019-1165-2
 | 
                            
                                
                                    | [331] | Ngai, J.C., Ko, F.W., Ng, S.S., To, K.W., Tong, M. and Hui, D.S. (2010) The Long-Term Impact of Severe Acute Respiratory Syndrome on Pulmonary Function, Exercise Capacity and Health Status. Respirology, 15, 543-550. https://doi.org/10.1111/j.1440-1843.2010.01720.x
 | 
                            
                                
                                    | [332] | Gurkan, O.U., O’Donnell, C., Brower, R., et al. (2003) Differential Effects of Mechanical Ventilatory Strategy on Lung Injury and Systemic Organ Inflammation in Mice. American Journal of Physiology—Lung Cellular and Molecular Physiology, 285, L710-L718. https://doi.org/10.1152/ajplung.00044.2003
 | 
                            
                                
                                    | [333] | Kalluri, R. and Weinberg, R.A. (2009) The Basics of Epithelial-Mesenchymal Transition. Journal of Clinical Investigation, 119, 1420-1428. https://doi.org/10.1172/JCI39104
 | 
                            
                                
                                    | [334] | Lee, K.A. and Nelson, C.M. (2012) New Insights into the Regulation of Epithelial-Mesenchymal Transition and Tissue Fibrosis. International Review of Cell and Molecular Biology, 294, 171-221. https://doi.org/10.1016/B978-0-12-394305-7.00004-5
 | 
                            
                                
                                    | [335] | Cabrera-Benítez, N.E., Parotto, M., Post, M., et al. (2012) Mechanical Stress Induces Lung Fibrosis by Epithelial-Mesenchymal Transition. Critical Care Medicine, 40, 510-517. https://doi.org/10.1097/CCM.0b013e31822f09d7
 | 
                            
                                
                                    | [336] | Hill, C., Jones, M.G., Davies, D.E., et al. (2019) Epithelial-Mesenchymal Transition Contributes to Pulmonary Fibrosis via Aberrant Epithelial/Fibroblastic Cross-Talk. Journal of Lung Health and Diseases, 3, 31-35. https://doi.org/10.29245/2689-999X/2019/2.1149
 | 
                            
                                
                                    | [337] | Szasz, O., Szigeti, Gy.P., Szasz, A. and Benyo, Z. (2018) Role of Electrical Forces in Angiogenesis. Open Journal of Biophysics, 8, 49-67. https://doi.org/10.4236/ojbiphy.2018.82005
 | 
                            
                                
                                    | [338] | Ballerini, M., Baronzio, G.F., Capito, G., Szasz, O. and Cassutti, V. (2013) Androtherm Application for the Peyronie’s Disease. Conference Papers in Medicine, 2013, Article ID: 962349. http://www.hindawi.com/archive/2013/962349
 https://doi.org/10.1155/2013/962349
 | 
                            
                                
                                    | [339] | Hegyi, G., Molnar, I., Mate, A. and Petrovics, G. (2017) Targeted Radiofrequency Treatment—Oncothermia Application in Non Oncological Diseases as Special Physiotherapy to Delay the Progressive Development. Clinical Practice, 14, 73-77. https://doi.org/10.4172/clinical-practice.100098
 | 
                            
                                
                                    | [340] | Jeung, T.-S., Ma, S.-Y., Choi, J., et al. (2015) Results of Oncothermia Combined with Operation, Chemotherapy and Radiation Therapy for Primary, Recurrent and Metastatic Sarcoma. Case Reports in Clinical Medicine, 4, 157-168. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56280
 https://doi.org/10.4236/crcm.2015.45033
 | 
                            
                                
                                    | [341] | DaSilva, R.M.V., Barichello, P.A., Medeiros, M.L., et al. (2013) Effect of Capacitive Radiofrequency on the Fibrosis of Patients with Cellulitis. Dermatology Research and Practice, 2013, Article ID: 715829. https://doi.org/10.1155/2013/715829
 | 
                            
                                
                                    | [342] | de Araujo, A.R., Soares, V.P.C., da Silva, F.S., et al. (2014) Radiofrequency for the Treatment of Skin Laxity: Mith or Truth. Anais Brasileiros de Dermatologia, 90, 707-721. https://doi.org/10.1590/abd1806-4841.20153605
 | 
                            
                                
                                    | [343] | Hagiwarra, S., Iwasasa, H., Matsumoto, S., et al. (2007) Association between Heat Stress Protein 70 Induction and Decreased Pulmonary Fibrosis in an Animal Model of Acute Lung Injury. Lung, 185, 287-293. https://doi.org/10.1007/s00408-007-9018-x
 | 
                            
                                
                                    | [344] | Ren, Y., Huo, W., Qi, R.-Q., et al. (2015) Intensive Local Thermotherapy Cleared Extensive Viral Warts in a Patient with Systemic Lupus Erythematosus. International Journal of Hyperthermia, 31, 5-7. https://doi.org/10.3109/02656736.2014.993339
 | 
                            
                                
                                    | [345] | Li, X., Zhang, C., Hong, Y., et al. (2012) Local Hyperthermia Treatment of Extensive Viral Warts in Darier Disease: A Case Report and Literature Review. International Journal of Hyperthermia, 28, 451-455. https://doi.org/10.3109/02656736.2012.677929
 | 
                            
                                
                                    | [346] | Fischer, H., Schwarzer, C. and Illek, B. (2003) Vitamin C Controls the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. PNAS, 101, 3691-3696. https://doi.org/10.1073/pnas.0308393100
 | 
                            
                                
                                    | [347] | Ou, J., Zhu, X., Zhang, H., et al. (2020) A Retrospective Study of Gemcitabine and Carboplatin with or without Intravenous Vitamin C on Patients with Advanced Triple-Negative Breast Cancer. Integrative Cancer Therapies, 19, 1-7. https://doi.org/10.1177/1534735419895591
 | 
                            
                                
                                    | [348] | Szasz, O., Szigeti, Gy.P. and Szasz, A.M. (2017) Electrokinetics of Temperature for Development and Treatment of Effusions. Advances in Bioscience and Biotechnology, 8, 434-449. https://doi.org/10.4236/abb.2017.811032
 | 
                            
                                
                                    | [349] | Szasz, A., Vincze, Gy., Szigeti, Gy. and Szasz, O. (2017) Internal Charge Redistribution and Currents in Cancerous Lesions. Journal of Advances in Biology, 10, 2061-2079. http://cirworld.com/index.php/jab/article/view/6328/6283
 | 
                            
                                
                                    | [350] | Akdis, M., Sokolowska, M., O’Mahony, L., et al. (2020) Immune Response to SARS-CoV-2 and Mechanisms of Immunopathological Changes in COVID-19. Allergy, 75, 1564-1581. https://doi.org/10.1111/all.14364
 | 
                            
                                
                                    | [351] | Rokni, M., Ghasemi, V. and Tavakoli, Z. (2020) Immune Responses and Pathogenesis of SARS-CoV-2 during an Outbreak in Iran: Comparison with SARS and MERS. Reviews in Medical Virology, 30, e2107. https://doi.org/10.1002/rmv.2107
 | 
                            
                                
                                    | [352] | Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2020) Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Frontiers in Oncology, 10, 1-8. https://doi.org/10.3389/fonc.2020.00376
 | 
                            
                                
                                    | [353] | Krenacs, T., Meggyeshazi, N., Forika, G., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, 6270. https://doi.org/10.3390/ijms21176270
 | 
                            
                                
                                    | [354] | Patents on Tumor-Vaccination. a) EP 2703001 A1, Europe (2014) http://www.google.com/patents/EP2703001A1?cl=en;
 b) US 2015/0217099 A1, USA (2015)
 http://www.freepatentsonline.com/20150217099.pdf;
 c) 2013 307 344, Australia (2016)
 http://www.ipaustralia.com.au/applicant/xax-kft/patents/AU2013307344/;
 d) KR 10-1714281, South Korea (2017)
 https://patents.google.com/patent/KR101714281B1/en
 e) CA 2,879,739, Canada (2017)
 http://www.google.com/patents/CA2879739C?cl=en.
 | 
                            
                                
                                    | [355] | Lopez-Collazo, E., Avendano-Ortiz, J., Martin-Quiros, A., et al. (2020) Immune Response and COVID-19: A Mirror Image of Sepsis. International Journal of Biological Sciences, 16, 2479-2489. https://doi.org/10.7150/ijbs.48400
 | 
                            
                                
                                    | [356] | Bootman, M., Golding, J. and Male, D.K. (2020) How Does the Human Body Fight a Viral Infection? Open Learn. https://www.open.edu/openlearn/science-maths-technology/biology/how-does-the-
 human-body-fight-viral-infection
 | 
                            
                                
                                    | [357] | Garcia, L.F. (2020) Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Frontiers in Immunology, 11, 1441. https://doi.org/10.3389/fimmu.2020.01441
 | 
                            
                                
                                    | [358] | Fu, L., Wang, B., Yuan, T., et al. (2020) Clinical Characteristics of Coronavirus Disease 2019 (COVID-19) in China: A Systematic Review and Meta-Analysis. Journal of Infection, 80, 656-665. https://doi.org/10.1016/j.jinf.2020.03.041
 | 
                            
                                
                                    | [359] | Mehta, P., McAuley, D., Brown, M., et al. (2020) COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. The Lancet, 395, 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0
 | 
                            
                                
                                    | [360] | Shahabinezhad, F., Mosaddeghi, P., Negahdaripour, M., et al. (2020) Therapeutic Approaches for Covid-19 Based on the Dynamics of Interferon-Mediated Immune Responses. https://doi.org/10.20944/preprints202003.0206.v1
 | 
                            
                                
                                    | [361] | Matched Antigen Pairs of SARS-CoV-2 Serology Test Development. Creative Diagnostics. https://www.creative-diagnostics.com/news-matched-antigen-pair-for-sars-cov-2-serology-test-development-86.htm
 | 
                            
                                
                                    | [362] | Chakravarthy, K.V. (2012) Investigating the Adaptive Immune Response in Influenza and Secondary Bacterial Pneumonia and Nanoparticle Based Therapeutic Delivery. PhD Dissertation, Department of Microbiology and Immunology, State University of New York, Buffalo. https://www.researchgate.net/publication/258694611_Investigating_the
 _adaptive_immune_response_in_influenza_and_secondary_bacterial_pneumonia
 _and_nanoparticle_based_therapeutic_delivery
 | 
                            
                                
                                    | [363] | Long, Q.-X., Liu, B.-Z., Deng, H.-J., et al. (2020) Antibody Responses to SARS-CoV-2 in Patients with COVID-19. Nature Medicine, 26, 845-848. https://doi.org/10.1038/s41591-020-0897-1
 | 
                            
                                
                                    | [364] | Zhang, W., Du, R.-H., Li, B., et al. (2020) Molecular and Serological Investigation of 2019-nCoV Infected Patients: Implication of Multiple Shedding Routes. Emerging Microbes & Infections, 9, 386-389. https://doi.org/10.1080/22221751.2020.1729071
 | 
                            
                                
                                    | [365] | Zhao, J., Yuan, Q., Wang, H., et al. (2020) Antibody Responses to SARS-CoV-2 in Patients of Novel Coronavirus Disease 2019. Clinical Infectious Diseases, ciaa344. https://doi.org/10.1093/cid/ciaa344
 | 
                            
                                
                                    | [366] | Guo, L., Ren, L., Yang, S., et al. (2020) Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clinical Infectious Diseases, ciaa310. | 
                            
                                
                                    | [367] | Liu, L., Liu, W., Zeng, Y., et al. (2020) A Preliminary Study on Serological 1 Assay for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 238 Admitted Hospital Patients. Microbes and Infection, 22, 206-211. https://doi.org/10.1016/j.micinf.2020.05.008
 | 
                            
                                
                                    | [368] | Sethuraman, N., Jeremiah, S.S. and Ryo, A. (2020) Interpreting Diagnostic Tests for SARS-CoV-2. JAMA, 323, 2249-2251. https://doi.org/10.1001/jama.2020.8259
 | 
                            
                                
                                    | [369] | Chen, J., Lau, Y.F., Lamirande, E.W., Paddock, C.D., Bartlett, J.H., Zaki, S.R. and Subbarao, K. (2010) Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection in Senescent BALB/c Mice: CD4+ T Cells Are Important in Control of SARS-CoV Infection. Journal of Virology, 84, 1289-1301. https://doi.org/10.1128/JVI.01281-09
 | 
                            
                                
                                    | [370] | Liu, A., Wang, W., Zhao, X., et al. (2020) Disappearance of Antibodies to SARS-CoV-2 in a Covid-19 Patient after Recovery. Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2020.07.009
 | 
                            
                                
                                    | [371] | Mo, H., Zeng, G., Ren, X., et al. (2006) Longitudinal Profile of Antibodies against SARS-Coronavirus in SARS Patients and Their Clinical Significance. Respirology, 11, 49-53. https://doi.org/10.1111/j.1440-1843.2006.00783.x
 | 
                            
                                
                                    | [372] | Fan, E., Beitler, J.R., Brochard, L., et al. (2020) COVID-19-Associated Acute Respiratory Distress Syndrome: Is a Different Approach to Management Warranted? The Lancet Respiratory Medicine, 8, 816-821. https://doi.org/10.1016/S2213-2600(20)30304-0
 | 
                            
                                
                                    | [373] | Vargas, M., Sutherasan, Y., Gregoretti, C., et al. (2020) PEEP Role in ICU and Operating Room: From Pathophysiology to Clinical Practice. The Scientific World Journal, 2014, Article ID: 852356. https://doi.org/10.1155/2014/852356
 | 
                            
                                
                                    | [374] | Ranieri, M.V., Macia, L., Fiore, T., et al. (1995) Cardiorespiratory Effects of Positive End-Expiratory Pressure during Progressive Tidal Volume Reduction (Permissive Hypercapnia) in Patients with Acute Respiratory Distress Syndrome. Anesthesiology, 83, 710-720. https://doi.org/10.1097/00000542-199510000-00010
 | 
                            
                                
                                    | [375] | Zhu, N., Zhang, D., Wang, W., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733. https://doi.org/10.1056/NEJMoa2001017
 | 
                            
                                
                                    | [376] | Tsolaki, V., Siempos, I., Magira, E., et al. (2020) PEEP Levels in COVID-19 Pneumonia. Critical Care, 24, 303. https://doi.org/10.1186/s13054-020-03049-4
 | 
                            
                                
                                    | [377] | Walkey, A.J., Del Sorbo, L., Hodgson, C.L., et al. (2017) Higher PEEP versus Lower PEEP Strategies for Patients with Acute Respiratory Distress Syndrome. Annals of the American Thoracic Society, 14, S297-S303. https://doi.org/10.1513/AnnalsATS.201704-338OT
 | 
                            
                                
                                    | [378] | Roesthuis, L., van den Berg, M. and van der Hoeven (2020) Advanced Respiratory Monitoring in COVID-19 Patient: Use Less PEEP. Critical Care, 24, 230. https://doi.org/10.1186/s13054-020-02953-z
 | 
                            
                                
                                    | [379] | Marini, J.J. and Gattinoni, L. (2020) Management of COVID-19 Respiratory Distress. JAMA, 323, 2329-2330. https://doi.org/10.1001/jama.2020.6825
 | 
                            
                                
                                    | [380] | Vashist, R. and Duggal, A. (2020) Respiratory Failure in Patients Infected with SARS-CoV-2. CCJM. https://doi.org/10.3949/ccjm.87a.ccc025
 | 
                            
                                
                                    | [381] | Reed, J. and Hutchinson, S. (2020) Coronavirus: Warning Thousands Could Be Left with Lung Damage. BBC News. https://www.bbc.com/news/health-53065340
 | 
                            
                                
                                    | [382] | George, P.M., Wells, A.U. and Jenkins, R.G. (2020) Pulmonary Fibrosis and COVID-19: The Potential Role for Antifibrotic Therapy. The Lancet Respiratory Medicine, 8, 807-815. https://doi.org/10.1016/S2213-2600(20)30225-3
 | 
                            
                                
                                    | [383] | Davido, B., Seang, S., Tubiana, R. and de Truchis, P. (2020) Post-COVID-19 Chronic Symptoms: A Post-Infectious Entity? Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2020.09.001
 | 
                            
                                
                                    | [384] | Arnold, D.T., Hamilton, F.W., Milne, A., Morley, A., Viner, J., Attwood, M., Noel, A., Gunning, S., Hatrick, J., Hamilton, S., Elvers, K.T., Hyams, C., Bibby, A., Moran, E., Adamali, H., Dodd, J., Maskell, N.A. and Barratt, S. (2020) Patient Outcomes after Hospitalisation with COVID-19 and Implications for Follow-Up; Results from a Prospective UK Cohort. https://doi.org/10.1101/2020.08.12.20173526
 | 
                            
                                
                                    | [385] | Puntmann, V.O., Carerj, M.L., Wieters, I., et al. (2020) Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiology, 5, 1265-1273. https://doi.org/10.1001/jamacardio.2020.3557
 | 
                            
                                
                                    | [386] | Greenhalgh, T., Knight, M., A’Court, C., Buxton, M. and Husain, L. (2020) Management of Post-Acute Covid-19 in Primary Care. BMJ, 370, m3026. https://doi.org/10.1136/bmj.m3026
 | 
                            
                                
                                    | [387] | Yelin, D., Wirtheim, E., Vetter, P., Kalil, A.C., Bruchfeld, J., Runold, M., Guaraldi, G., Mussini, C., Gudiol, C., Pujol, M., Bandera, A., Scudeller, L., Paul, M., Kaiser, L. and Leibovici, L. (2020) Long-Term Consequences of COVID-19: Research Needs. The Lancet/Infection, 20, 1115-1117. https://doi.org/10.1016/S1473-3099(20)30701-5
 | 
                            
                                
                                    | [388] | Gousseff, M., Penot, P., Gallay, L., et al. (2020) Clinical Recurrences of COVID-19 Symptoms after Recovery: Viral Relapse, Reinfection or Inflammatory Rebound? Journal of Infection, 81, 816-846. https://doi.org/10.1016/j.jinf.2020.06.073
 | 
                            
                                
                                    | [389] | Matricardi, P.M., Dal Negro, R.W. and Nisini, R. (2020) The First, Holistic Model for COVID19: Implications for Prevention, Diagnosis, and Public Health Measures. Pediatric Allergy and Immunology, 1-17. https://doi.org/10.1111/pai.13271
 | 
                            
                                
                                    | [390] | Szasz, A. and Szasz, O. (2020) Time-Fractal Modulation of Modulated Electro-Hyperthermia (mEHT). In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Newcastle upon Tyne, Ch. 17, 377-415. | 
                            
                                
                                    | [391] | Cunha, L., Szigeti, K., Mathé, D. and Metello, L.F. (2014) The Role of Molecular Imaging in Modern Drug Development. Drug Discovery Today, 19, 936-948. https://doi.org/10.1016/j.drudis.2014.01.003
 | 
                            
                                
                                    | [392] | Szigeti, K., Szabó, T., Korom, C., Czibak, I., Horváth, I., Veres, D.S., Gyöngyi, Z., Karlinger, K., Bergmann, R., Pócsik, M., Budán, F. and Máthé, D. (2016) Radiomics-Based Differentiation of Lung Disease Models Generated by Polluted Air Based on X-Ray Computed Tomography Data. BMC Medical Imaging, 16, 14. https://doi.org/10.1186/s12880-016-0118-z
 | 
                            
                                
                                    | [393] | Szasz, A. (2014) Oncothermia: Complex Therapy by EM and Fractal Physiology. 31th URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, 20 October 2014, 1-4. https://doi.org/10.1109/URSIGASS.2014.6930100
 | 
                            
                                
                                    | [394] | Szasz, O., Vincze, G., Szigeti, G.P., Benyo, Z. and Szasz, A. (2018) An Allometric Approach of Tumor-Angiogenesis. Medical Hypothesis, 116, 74-78. https://doi.org/10.1016/j.mehy.2018.03.015
 | 
                            
                                
                                    | [395] | Hegyi, G., Vincze, Gy. and Szasz, A. (2020) Thermodynamic Description of Living Homeostasis. In: George, T.F., Ed., New Insights into Physical Science, Vol. 1, Book Publisher International, London, Chapter 10, 1-13. http://www.bookpi.org/bookstore/product/new-insights-into-physical-science-vol-1
 | 
                            
                                
                                    | [396] | Szasz, A., Iluri, N. and Szasz, O. (2013) Local Hyperthermia in Oncology—To Choose or Not to Choose? In: Huilgol, N., Ed., Hyperthermia, InTech, London, Ch. 1, 1-82. https://doi.org/10.5772/52208
 |