International Journal of Modern Nonlinear Theory and Application

Volume 6, Issue 2 (June 2017)

ISSN Print: 2167-9479   ISSN Online: 2167-9487

Google-based Impact Factor: 0.5  Citations  

Robust Model-Free Software Sensors for the HIV/AIDS Infection Process

HTML  XML Download Download as PDF (Size: 841KB)  PP. 39-58  
DOI: 10.4236/ijmnta.2017.62004    1,907 Downloads   3,356 Views  

ABSTRACT

This paper considers the problem of the HIV/AIDS Infection Process filtering characterized by three compounds, namely, the number of healthy T-cells, the number of infected T-cells and free virus particles. Only the first and third of them can be measurable during the medical treatment process. Moreover, the exact parameter values are admitted to be also unknown. So, here we deal with an uncertain dynamic model that excludes the application of classical filtering theory and requires the application of robust filters successfully working in the absence of a complete mathematical model of the considered process. The problem is to estimate the number of infected T-cells based on the available information. Here we admit the presence of stochastic “white noise” in current observations. To do that we apply the Luenberger-like filter (software sensor) with a matrix gain, which should be adjusted at the beginning of the process in such a way that the filtering error would be as less as possible using the Attractive Ellipsoid Method (AEM). It is shown that the corresponding trajectories of the filtering error converge to an ellipsoidal set of a prespecified form in mean-square sense. To generate the experimental data sequences in the test-simulation example, we have used the well-known simplified HIV/ AIDS model. The obtained results confirm the effectiveness of the suggested approach.

Share and Cite:

Alazki, H. and Poznyak, A. (2017) Robust Model-Free Software Sensors for the HIV/AIDS Infection Process. International Journal of Modern Nonlinear Theory and Application, 6, 39-58. doi: 10.4236/ijmnta.2017.62004.

Cited by

No relevant information.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.