Journal of Computer and Communications

Volume 5, Issue 1 (January 2017)

ISSN Print: 2327-5219   ISSN Online: 2327-5227

Google-based Impact Factor: 1.98  Citations  

A Support Construction for CT Image Based on K-Means Clustering

HTML  XML Download Download as PDF (Size: 5598KB)  PP. 137-151  
DOI: 10.4236/jcc.2017.51011    1,646 Downloads   2,706 Views  Citations

ABSTRACT

Computer Tomography in medical imaging provides human internal body pictures in the digital form. The more quality images it provides, the better information we get. Normally, medical imaging can be constructed by projection data from several perspectives. In this paper, our research challenges and describes a numerical method for refining the image of a Region of Interest (ROI) by constructing support within a standard CT image. It is obvious that the quality of tomographic slice is affected by artifacts. CT using filter and K-means clustering provides a way to reconstruct an ROI with minimal artifacts and improve the degree of the spatial resolution. Experimental results are presented for improving the reconstructed images, showing that the approach enhances the overall resolution and contrast of ROI images. Our method provides a number of advantages: robustness with noise in projection data and support construction without the need to acquire any additional setup.

Share and Cite:

Dhammatorn, W. and Shioya, H. (2017) A Support Construction for CT Image Based on K-Means Clustering. Journal of Computer and Communications, 5, 137-151. doi: 10.4236/jcc.2017.51011.

Cited by

No relevant information.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.