Open Journal of Statistics

Volume 5, Issue 3 (April 2015)

ISSN Print: 2161-718X   ISSN Online: 2161-7198

Google-based Impact Factor: 1.45  Citations  

A New Algorithm for Generalized Least Squares Factor Analysis with a Majorization Technique

HTML  XML Download Download as PDF (Size: 279KB)  PP. 165-172  
DOI: 10.4236/ojs.2015.53020    3,322 Downloads   5,064 Views  Citations
Author(s)

ABSTRACT

Factor analysis (FA) is a time-honored multivariate analysis procedure for exploring the factors underlying observed variables. In this paper, we propose a new algorithm for the generalized least squares (GLS) estimation in FA. In the algorithm, a majorization step and diagonal steps are alternately iterated until convergence is reached, where Kiers and ten Berge’s (1992) majorization technique is used for the former step, and the latter ones are formulated as minimizing simple quadratic functions of diagonal matrices. This procedure is named a majorizing-diagonal (MD) algorithm. In contrast to the existing gradient approaches, differential calculus is not used and only elmentary matrix computations are required in the MD algorithm. A simuation study shows that the proposed MD algorithm recovers parameters better than the existing algorithms.

Share and Cite:

Adachi, K. (2015) A New Algorithm for Generalized Least Squares Factor Analysis with a Majorization Technique. Open Journal of Statistics, 5, 165-172. doi: 10.4236/ojs.2015.53020.

Cited by

[1] Validation of the EPACODI-1 scale: University Students' perceptions of Inclusive Education
Endrino, J Molina-Saorín… - European Journal of …, 2023
[2] Uzvedības faktoru ietekme uz portfeļu pārvaldnieku investīciju lēmumu pieņemšanu Eiropā
2023
[3] Estrategias educativas y formación práctica
2023
[4] Research on rumors surrounding food safety based on information source differences (a review)
Food Science and …, 2022
[5] Factor analysis: Latent variable, matrix decomposition, and constrained uniqueness formulations
2019
[6] クラスタリングを伴う因子分析法の研究開発
2019
[7] データ融合のためのカーネル正準相関分析と制約付きマッチング
2019
[8] Fixed factor analysis with clustered factor score constraint
Computational Statistics & Data Analysis, 2016
[9] Contributions of Dutch matricians to computational statistics
Proceedings of the annual meeting of Japanese Society of Computational Statistics 日本計算機統計学会 第 30 回大会実行委員会, 2016

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.