Journal of Computer and Communications
Volume 1, Issue 5 (October 2013)
ISSN Print: 2327-5219 ISSN Online: 2327-5227
Google-based Impact Factor: 1.98 Citations
LeaDen-Stream: A Leader Density-Based Clustering Algorithm over Evolving Data Stream ()
Affiliation(s)
ABSTRACT
Clustering evolving data streams is important to be performed in a limited time with a reasonable quality. The existing micro clustering based methods do not consider the distribution of data points inside the micro cluster. We propose LeaDen-Stream (Leader Density-based clustering algorithm over evolving data Stream), a density-based clustering algorithm using leader clustering. The algorithm is based on a two-phase clustering. The online phase selects the proper mini-micro or micro-cluster leaders based on the distribution of data points in the micro clusters. Then, the leader centers are sent to the offline phase to form final clusters. In LeaDen-Stream, by carefully choosing between two kinds of micro leaders, we decrease time complexity of the clustering while maintaining the cluster quality. A pruning strategy is also used to filter out real data from noise by introducing dense and sparse mini-micro and micro-cluster leaders. Our performance study over a number of real and synthetic data sets demonstrates the effectiveness and efficiency of our method.
KEYWORDS
Share and Cite:
Cited by
Copyright © 2025 by authors and Scientific Research Publishing Inc.
This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.