Positioning

Volume 4, Issue 2 (May 2013)

ISSN Print: 2150-850X   ISSN Online: 2150-8526

Google-based Impact Factor: 0.8  Citations  

Self-Constructing Neural Network Modeling and Control of an AGV

HTML  XML Download Download as PDF (Size: 547KB)  PP. 160-168  
DOI: 10.4236/pos.2013.42016    3,969 Downloads   6,624 Views  Citations

ABSTRACT

Tracking precision of pre-planned trajectories is essential for an auto-guided vehicle (AGV). The purpose of this paper is to design a self-constructing wavelet neural network (SCWNN) method for dynamical modeling and control of a 2-DOF AGV. In control systems of AGVs, kinematical models have been preferred in recent research documents. However, in this paper, to enhance the trajectory tracking performance through including the AGV’s inertial effects in the control system, a learned dynamical model is replaced to the kinematical kind. As the base of a control system, the mathematical models are not preferred due to modeling uncertainties and exogenous inputs. Therefore, adaptive dynamic and control models of AGV are proposed using a four-layer SCWNN system comprising of the input, wavelet, product, and output layers. By use of the SCWNN, a robust controller against uncertainties is developed, which yields the perfect convergence of AGV to reference trajectories. Owing to the adaptive structure, the number of nodes in the layers is adjusted in online and thus the computational burden of the neural network methods is decreased. Using software simulations, the tracking performance of the proposed control system is assessed.

Share and Cite:

Keighobadi, J. , Fazeli, K. and Shahidi, M. (2013) Self-Constructing Neural Network Modeling and Control of an AGV. Positioning, 4, 160-168. doi: 10.4236/pos.2013.42016.

Cited by

[1] Review of Vehicle Active Safety Systems and Their Coordinated Control
2021
[2] Positioning algorithm for AGV autonomous driving platform based on artificial neural networks
Robotic Systems and Applications, 2021
[3] Yük Kapasitesi Şase Yapısından Bağımsız Bir Otonom Mobil Robot Tasarımı ve Dayanım Analizi
Mühendis ve Makina, 2021
[4] Design of Distributed Suboptimal Controller for Formation of a Group of Nonholonomic Mobile Robots in the presence of Environmental Obstacles
2020
[5] A novel data-driven rollover risk assessment for articulated steering vehicles using RNN
2020
[6] Design of Distributed Suboptimal Controller for Formation of a Group of Non-holonomic Mobile Robots in the presence of Environmental Obstacles
2020
[7] طراحی کنترلگر زیربهینه‌ی توزیع شده برای آرایش‌بندی گروه ربات متحرک غیرهولونومیک در حضور موانع محیطی‎
2020
[8] A novel data-driven rollover risk assessment for articulated steering vehicles using RNN.
2020

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.