Intelligent Control and Automation

Volume 3, Issue 4 (November 2012)

ISSN Print: 2153-0653   ISSN Online: 2153-0661

Google-based Impact Factor: 2.22  Citations  

Linear Inferential Modeling: Theoretical Perspectives, Extensions, and Comparative Analysis

HTML  Download Download as PDF (Size: 774KB)  PP. 376-389  
DOI: 10.4236/ica.2012.34042    4,050 Downloads   6,131 Views  Citations

ABSTRACT

Inferential models are widely used in the chemical industry to infer key process variables, which are challenging or expensive to measure, from other more easily measured variables. The aim of this paper is three-fold: to present a theoretical review of some of the well known linear inferential modeling techniques, to enhance the predictive ability of the regularized canonical correlation analysis (RCCA) method, and finally to compare the performances of these techniques and highlight some of the practical issues that can affect their predictive abilities. The inferential modeling techniques considered in this study include full rank modeling techniques, such as ordinary least square (OLS) regression and ridge regression (RR), and latent variable regression (LVR) techniques, such as principal component regression (PCR), partial least squares (PLS) regression, and regularized canonical correlation analysis (RCCA). The theoretical analysis shows that the loading vectors used in LVR modeling can be computed by solving eigenvalue problems. Also, for the RCCA method, we show that by optimizing the regularization parameter, an improvement in prediction accuracy can be achieved over other modeling techniques. To illustrate the performances of all inferential modeling techniques, a comparative analysis was performed through two simulated examples, one using synthetic data and the other using simulated distillation column data. All techniques are optimized and compared by computing the cross validation mean square error using unseen testing data. The results of this comparative analysis show that scaling the data helps improve the performances of all modeling techniques, and that the LVR techniques outperform the full rank ones. One reason for this advantage is that the LVR techniques improve the conditioning of the model by discarding the latent variables (or principal components) with small eigenvalues, which also reduce the effect of the noise on the model prediction. The results also show that PCR and PLS have comparable performances, and that RCCA can provide an advantage by optimizing its regularization parameter.

Share and Cite:

Madakyaru, M. , Nounou, M. and Nounou, H. (2012) Linear Inferential Modeling: Theoretical Perspectives, Extensions, and Comparative Analysis. Intelligent Control and Automation, 3, 376-389. doi: 10.4236/ica.2012.34042.

Cited by

[1] COMPARATIVE ANALYSIS ON DIFFERENT MODELLING TECHNIQUES OF C5 TOP COMPOSITION FOR NAPHTHA STABILIZER COLUMN
International Journal For Technological Research In Engineering, 2019
[2] An improved multivariate chart using partial least squares with continuous ranked probability score
2018
[3] Enhanced dynamic data-driven fault detection approach: Application to a two-tank heater system
2017
[4] Improved Fault Detection and Process Safety Using Multiscale Shewhart Charts
2017
[5] Improved data-based fault detection strategy and application to distillation columns
Process Safety and Environmental Protection, 2017
[6] Enhanced Monitoring Using Multiscale Exponentially Weighted Moving Average Control Charts
2016
[7] 建模在氯化法生产钛白中的应用
云南冶金, 2016
[8] Improved Shewhart chart using multiscale representation
2015
[9] Near infrared spectroscopy coupled with radial basis function neural network for at-line monitoring of Lactococcus lactis subsp. fermentation
Saudi Journal of Biological Sciences, 2015
[10] Univariate process monitoring using multiscale Shewhart charts
Control, Decision and Information Technologies (CoDIT), 2014 International Conference on, 2014
[11] Integrated multiscale latent variable regression and application to distillation columns
Modelling and Simulation in Engineering, 2013

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.