Open Journal of Statistics

Volume 2, Issue 4 (October 2012)

ISSN Print: 2161-718X   ISSN Online: 2161-7198

Google-based Impact Factor: 1.45  Citations  

Maximum Entropy and Maximum Likelihood Estimation for the Three-Parameter Kappa Distribution

HTML  Download Download as PDF (Size: 78KB)  PP. 415-419  
DOI: 10.4236/ojs.2012.24050    4,576 Downloads   8,143 Views  Citations
Author(s)

ABSTRACT

The two statistical principles of maximum entropy and maximum likelihood are investigated for the three-parameter kappa distribution. These two methods become equivalent in the discrete case with x, β>0 where 0<α=1/(2k+1)≤1, k=0,1,2…or the maximum entropy method.

Share and Cite:

B. Kumphon, "Maximum Entropy and Maximum Likelihood Estimation for the Three-Parameter Kappa Distribution," Open Journal of Statistics, Vol. 2 No. 4, 2012, pp. 415-419. doi: 10.4236/ojs.2012.24050.

Cited by

[1] A new mixture of exponential-Weibull distribution and maximum entropy
AIP Conference Proceedings, 2023
[2] Exponential Rayleigh distribution: Approximate non–Bayesian estimation parameters and survival function
AIP Conference Proceedings, 2023
[3] Comparing estimation methods for the three-parameter kappa distribution with application to precipitation data
2021
[4] Value at Risk Estimation using the Kappa Distribution with Application to Insurance Data
2019
[5] Macroscopic & mesoscopic dynamics of financial markets
2018
[6] Finite Sample Corrections for Parameters Estimation and Significance Testing
Frontiers in Applied Mathematics and Statistics, 2018
[7] Análise da degradação mecânica de ativos físicos
2017
[8] QUAL O MELHOR MODELO PROBABILíSTICO EM ANáLISES DE FIABILIDADE?
F Fernandes, A Carvalho, J Sobral - dem.isel.pt, 2013
[9] Testes de ajuste a distribuições estatísticas e métodos para estimação dos parâmetros em análises de fiabilidade
2013
[10] Estimation of Kumaraswamy Distribution Parameters Using the Principle of Maximum Entropy

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.