Intelligent Information Management

Volume 2, Issue 4 (April 2010)

ISSN Print: 2160-5912   ISSN Online: 2160-5920

Google-based Impact Factor: 1.15  Citations  

Hybrid Neural Network Architecture for On-Line Learning

HTML  Download Download as PDF (Size: 750KB)  PP. 253-261  
DOI: 10.4236/iim.2010.23030    4,816 Downloads   8,534 Views  Citations

Affiliation(s)

.

ABSTRACT

Approaches to machine intelligence based on brain models use neural networks for generalization but they do so as signal processing black boxes. In reality, the brain consists of many modules that operate in parallel at different levels. In this paper we propose a more realistic biologically inspired hybrid neural network architecture that uses two kinds of neural networks simultaneously to consider short-term and long-term characteristics of the signal. The first of these networks quickly adapts to new modes of operation whereas the second one provides more accurate learning within a specific mode. We call these networks the surfacing and deep learning agents and show that this hybrid architecture performs complementary functions that improve the overall learning. The performance of the hybrid architecture has been compared with that of back-propagation perceptrons and the CC and FC networks for chaotic time-series prediction, the CATS benchmark test, and smooth function approximation. It is shown that the proposed architecture provides a superior performance based on the RMS error criterion.

Share and Cite:

Chen, Y. , Kak, S. and Wang, L. (2010) Hybrid Neural Network Architecture for On-Line Learning. Intelligent Information Management, 2, 253-261. doi: 10.4236/iim.2010.23030.

Cited by

[1] Open Information Extraction: A Review of Baseline Techniques, Approaches, and Applications
El, S Yu… - arXiv preprint arXiv …, 2023
[2] Prediction of Data Transmission Route Congestion in Telecommunication Systems Based on a Modified Elman Neural Network
2023
[3] IoT Network Administration by Intelligent Decision Support Based on Combined Neural Networks
Security, Trust and Privacy Models, and …, 2022
[4] Transfer learning and GRU-CRF augmentation for COVID-19 fake news detection
Computer Science and …, 2022
[5] Комбинированная нейросетевая модель для анализа состояния элементов компьютерной сети
2021
[6] ОЦЕНКА СОСТОЯНИЯ ЭЛЕМЕНТОВ КОМПЬЮТЕРНЫХ СЕТЕЙ НА ОСНОВЕ ПРИМЕНЕНИЯ КОМБИНИРОВАННОЙ НЕЙРОННОЙ СЕТИ/ИБ …
ТРУДЫ ЦНИИС, 2020
[7] Combined Neural Network for Assessing the State of Computer Network Elements
2020
[8] ОЦЕНКА СОСТОЯНИЯ ЭЛЕМЕНТОВ КОМПЬЮТЕРНЫХ СЕТЕЙ НА ОСНОВЕ ПРИМЕНЕНИЯ КОМБИНИРОВАННОЙ НЕЙРОННОЙ СЕТИ/ИБ Саенко
2020
[9] ОЦЕНКА СОСТОЯНИЯ ЭЛЕМЕНТОВ КОМПЬЮТЕРНЫХ СЕТЕЙ НА ОСНОВЕ ПРИМЕНЕНИЯ КОМБИНИРОВАННОЙ НЕЙРОННОЙ СЕТИ
2020
[10] МОДЕЛЬ МОНІТОРИНГУ ТА ПРОГНОЗУВАННЯ СТАНУ ТЕЛЕКОМУНІКАЦІЙНОЇ МЕРЕЖІ З ВИКОРИСТАННЯМ НЕЧІТКИХ НЕЙРОННИХ МЕРЕЖ
Зб?рник наукових праць В?Т?, 2018
[11] MONITORING AND FORECASTING COMPUTER NETWORK STATE BASED ON THE USE OF HYBRID NEURAL NETWORKS
2016
[12] Application of Hybrid Neural Networks for Monitoring and Forecasting Computer Networks States
Advances in Neural Networks – ISNN 2016, 2016
[13] Мониторинг и прогнозирование состояния компьютерных сетей на основе применения гибридных нейронных сетей
2016

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.