Journal of Data Analysis and Information Processing

Volume 11, Issue 1 (February 2023)

ISSN Print: 2327-7211   ISSN Online: 2327-7203

Google-based Impact Factor: 3.58  Citations  

Heart Disease Prediction Using Machine Learning Algorithms with Self-Measurable Physical Condition Indicators

HTML  XML Download Download as PDF (Size: 366KB)  PP. 1-10  
DOI: 10.4236/jdaip.2023.111001    551 Downloads   4,503 Views  Citations
Author(s)

ABSTRACT

In recent years, the number of cases of heart disease has been greatly increasing, and heart disease is associated with a high mortality rate. Moreover, with the development of technologies, some advanced types of equipment were invented to help patients measure health conditions at home and predict the risks of having heart disease. The research aims to find the accuracy of self-measurable physical health indicators compared to all indicators measured by healthcare providers in predicting heart disease using five machine learning models. Five models were used to predict heart disease, including Logistics Regression, K Nearest Neighbors, Support Vector Model, Decision tree, and Random Forest. The database used for the research contains 13 types of health test results and the risks of having heart disease for 303 patients. All matrices consisted of all 13 test results, while the home matrices included 6 results that could test at home. After constructing five models for both the home matrices and all matrices, the accuracy score and false negative rate were computed for every five models. The results showed all matrices had higher accuracy scores than home matrices in all five models. The false negative rates were lower or equal for all matrices than home matrices for five machine learning models. The conclusion was drawn from the results that home-measured physical health indicators were less accurate than all physical indicators in predicting patients’ risk for heart disease. Therefore, without the future development of home-testable indicators, all physical health indicators are preferred in measuring the risk for heart diseases.

Share and Cite:

Sun, H. and Pan, J. (2023) Heart Disease Prediction Using Machine Learning Algorithms with Self-Measurable Physical Condition Indicators. Journal of Data Analysis and Information Processing, 11, 1-10. doi: 10.4236/jdaip.2023.111001.

Cited by

[1] Heart disease prediction using machine learning, deep Learning and optimization techniques-A semantic review
Multimedia Tools and …, 2024
[2] Precision healthcare: A deep dive into machine learning algorithms and feature selection strategies for accurate heart disease prediction
Computers in Biology and …, 2024
[3] A comparative study of artificial intelligence techniques for categorization and prediction of heart diseases
النشرة المعلوماتية في …, 2024
[4] CardioInsights: Heart Disease Prediction Using Machine Learning Algorithms
Journal of Applied …, 2024
[5] Machine Learning Untuk Klasifikasi Penyakit Jantung
Aisyah Journal Of …, 2024
[6] Fully On-Chain DAO to Invest in NFTs
2023 4th International …, 2023
[7] Recognition of Heart Disease Based on Primitive Parameters Using Machine Learning Model
2023 7th International …, 2023
[8] Enhancing Heart Disease Forecasting through Advanced Predictive Modeling
2023 5th …, 2023
[9] AN OPTIMIZED HYBRID CUCKOO SEARCH BIO-INSPIRED DEEP BELIEF NETWORK FOR HEART DISEASE PREDICTION
Journal of Theoretical and Applied Information …, 2023

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.