Materials Sciences and Applications

Volume 11, Issue 3 (March 2020)

ISSN Print: 2153-117X   ISSN Online: 2153-1188

Google-based Impact Factor: 0.97  Citations  

Elaboration and Characterization of a Composite Material Based on Canarium schweinfurthii Engl Cores with a Polyester Matrix

HTML  XML Download Download as PDF (Size: 729KB)  PP. 204-215  
DOI: 10.4236/msa.2020.113014    548 Downloads   1,266 Views  Citations

ABSTRACT

The aim of this work was to develop and characterize a polyester matrix composite material based on Canarium schweinfurthii Engl core granule. The particle size and the mass fractions of these cores used as fillers in this composite were the two optimization parameters. The experimentation of the twelve sample areas was based on the following optimization parameters: Three particles sizes of 80 < T1 < 160 μm, 160 < T2 < 315 μm and 315 < T3 < 630 μm and four mass fractions of 0%, 40%, 45% and 50%. The composites were produced by hand lay-up method. The physical and mechanical parameters concerned by this study are: absolute density, compressive stress at break, Young’s modulus in bending and coefficient of static friction with wood. Each of these parameters was determined by testing ten specimens per sampling area. It was found that the absolute density varies very little as a function of particle size and mass fraction. This absolute density is between 1200 and 1232 kg·m-3, which allows us to admit that this composite belongs to the family of light materials. The maximum compressive stress at break was obtained for the formulation 40% filler of size T3. This compressive stress at maximum rupture is in the range of 199.14 MPa. From 0% to 45% of filler, the flexural Young’s modulus of the composite increases whatever the particle size. The highest value is obtained for T2 particle size, i.e. 13.11 GPa. The static friction coefficient of the composite on wood increases as the filler content varies from 0.30 to 0.42. Thus, in view of the properties obtained, this composite can be used as alternative solutions in industrial applications, for the manufacturing of shoe heel, house ceiling, floors for housing and table support.

Share and Cite:

Ndapeu, D. , Tamwo, F. , Koungang, M. , Tchuen, G. , Tagne, N. , Bistac, S. and Njeugna, E. (2020) Elaboration and Characterization of a Composite Material Based on Canarium schweinfurthii Engl Cores with a Polyester Matrix. Materials Sciences and Applications, 11, 204-215. doi: 10.4236/msa.2020.113014.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.