Journal of Cancer Therapy

Volume 10, Issue 7 (July 2019)

ISSN Print: 2151-1934   ISSN Online: 2151-1942

Google-based Impact Factor: 0.30  Citations  h5-index & Ranking

Genomic Instability in Cancer II: 4N-Skewed (90°) Reductive Division via Fragile Sites to Fitness Increase for Solid and Hematological Cancer Beginnings

HTML  XML Download Download as PDF (Size: 422KB)  PP. 537-564  
DOI: 10.4236/jct.2019.107045    849 Downloads   1,789 Views  Citations
Author(s)

Affiliation(s)

ABSTRACT

The objective herein was to connect the ontogeny process of diplochromosomal, amitotic, 4n-skewed division-system, to cytogenetic deficiency lesions in satellite, repetitive DNAs, especially in the chromosomal fragile sites, some 100 distributed over the genome. These latter studies had shown that chemical induced replication-stress led to un-replicated lesions in these fragile sites, which from inaccurate repair processes caused genomic instability. In the chain of events of the ontogeny process to the special tetraploidy, it was proposed that primary damaged human cells could undergo replication stress from repair-process present during cell replication, a suggestion verified by X-ray damaged cells producing the unstable fragile sites (see text). The cancer-importance for therapy is recognition of cell cycle change for the 4n derivative fitness-gained, diploid progeny cells. An open question is whether RB controlling G1 to S-period is mutated at this suggested tumorigenesis initiating phase, and if so, with what consequences for therapy. The fragile site studies further showed that repair of repetitive DNAs could produce two types of genomic changes: single gene mutations and CNVs, which were here shown to be chromosomally located on “borders” to repairing satellite lesions. This genomic placement was found to correspond to mutations identified in tumor sequencing (p53, Rb, MYC), favoring a bad luck location for their cancer “mutational nature”. The CNVs in cancers, are here seen as molecular expressions of long-known cytogenetic HSRs and DMs also with demonstrated origin from amplifications of single genes. Over-expression of oncogenes was hinted of being from duplications, but Drosophila genetics demonstrated the opposite, gene inactivation. The reduced eye-size from dominant, BAR-Ultra-Bar-eye phenotypes, was caused by duplications, inactivating the genetic system for eye-size. The finding of CNVs showing “evasion” of the immune system suggests, inactivation of immune-determining genetics. Since mutated genes on borders to satellite DNAs are a fact in hematological cancers, the 4n-skewed division-system is suggested to replace debated leukemogenesis with fitness-gain from molecular mutations. For these cancers the question is how normal bone marrow cells attain genomic damage for special tetraploidy, which was referred to studies of cells moving in artificial marrow-like substrate, needing serious attention.

Share and Cite:

Walen, K. (2019) Genomic Instability in Cancer II: 4N-Skewed (90°) Reductive Division via Fragile Sites to Fitness Increase for Solid and Hematological Cancer Beginnings. Journal of Cancer Therapy, 10, 537-564. doi: 10.4236/jct.2019.107045.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.