International Journal of Geosciences

Volume 2, Issue 4 (November 2011)

ISSN Print: 2156-8359   ISSN Online: 2156-8367

Google-based Impact Factor: 0.56  Citations  h5-index & Ranking

A Unified Model of Neoarchean-Proterozoic Convergence and Rifting of Indian Cratons: Geophysical Constraints

HTML  Download Download as PDF (Size: 3511KB)  PP. 610-630  
DOI: 10.4236/ijg.2011.24063    9,989 Downloads   15,798 Views  Citations

Affiliation(s)

.

ABSTRACT

Neoarchean and Proterozoic sutures and collision zones are identified in the Indian Peninsular Shield based on high seismic velocity; gravity highs and high conductivity in the upper crust due to thrusting while sub- ducted side are demarcated based on geophysical signatures of crustal thickening and back arc type basins. Some of them appear to form triple junctions. The Bouguer anomaly map of the south Indian shield when transformed to apparent density map through harmonic inversion, provided high density linear zones coin- ciding with the shear zone and the transition zone-the Moyar Bhavani Shear Zone (MBSZ) between the Eastern Dharwar Craton (EDC) and the Western Dharwar Craton (WDC) and the Dharwar cratons and the Southern Granulite Terrain (SGT), respectively. It is supported by high seismic velocity and high conductiv- ity suggesting them to be caused by high grade granulite rocks related to Neoarchean-Paleoproterozoic su- tures and collision zones. These investigations also suggest thick crust (~40 - 50 km) under the WDC and the SGT forming crustal root of 50 - 52 km in the south western part and thin crust of 31 - 32 km under the EDC indicating direction of convergence and subduction as E-W and N-S between the EDC and the WDC and Dharwar cratons and the SGT, respectively. It gave rise to contemporary lower crustal granulite rocks in the northern part of the SGT and Cauvery shear zone (CSZ) as collision related central core complex of various deep seated intrusive rocks of Paleo-Mesoproterozoic period. The second case belonging to Meso-proterozoic period is related to the collision of the Bundelkhand craton and the Bhandara-Bastar craton (BBC) and the Dharwar craton (DC) in Central India along the Satpura Mobile Belt (SMB) and the BBC and the DC along the Godavari Proterozoic Belt due to N-S and NE-SW convergences, respectively. This process has given rise to lower crustal granulite rocks of high density, high velocity and high conductivity along the SMB and the GPB. An upper mantle conductor delineated south of the western part of the SMB under Dec- can Volcanic Province and a regional gravity gradient almost sub parallel to it indicate an interface with flu- ids separating rocks of different densities that appears to demarcate the trace of the Proterozoic subduction and suture related to the SMB collision zone during Mesoproterozoic period. High reflectivity of the lower crust along seismic profiles across the SMB indicate an extensional phase prior to this convergence. The SMB is connected to the Aravalli Delhi Mobile Belt (ADMB) in the western part that is another collision zone of Meso-proterozoic period, forming an arcuate shaped collision zone between the Bundelkhand craton and Rajasthan block with E-W convergence. There are indications of a prior phase of convergence during Paleo-Proterozoic period followed by rifting during Paleo-Meso-proterozoic period (~1.9 - 1.6 Ga) along the SMB, the ADMB and the GPB that gave rise to large scale contemporary intrusive in these sections. The contemporary Mahakoshal-Bijawar and Pakhal group of rocks of Paleo Proterozoic period (~1.9 - 1.6 Ga) were deposited over the rifted platform of the Bundelkhand craton along the SMB and cratons along the GPB, respectively during the extensional phase as suggested above based on high reflectivity of the lower crust. It is followed by deposition of the Vindhyan sediments of Meso-Neoproterozoic period (~1.6 - 0.7 Ga) along the SMB and the ADMB as foreland basins during Meso-Neoproterozoic convergence. Simultaneous N-S and E-W directed convergences in the two cases, viz., the SMB and the ADMB that are connected forming an arcuate shaped collision zone suggest NE-SW directed primary stress direction similar to the GPB that is supported by NW-SE oriented large lineaments in Bundelkhand craton and Peninsular shield. The Eastern Ghat Mobile Belt (EGMB) also shows signatures of E-W or NE-SW directed Mesoproterozoic (~1.5 - 1.0 Ga) convergence with East Antarctica. This convergence was preceded by Paleo-Mesoproterozoic rifting (~1.9 - 1.6 Ga) that gave rise to contemporary activities of the EGMB and large scale volcanic activity that formed several basins west of it.

Share and Cite:

D. Mishra, "A Unified Model of Neoarchean-Proterozoic Convergence and Rifting of Indian Cratons: Geophysical Constraints," International Journal of Geosciences, Vol. 2 No. 4, 2011, pp. 610-630. doi: 10.4236/ijg.2011.24063.

Cited by

[1] A possible paleorift zone in the Central Dharwar Craton of South Indian Shield: Evidence from regional gravity anomalies
Geosystems and Geoenvironment, 2022
[2] Litospheric architecture and geodynamics of the Archean Dharwar craton and surrounding terranes: New insights from satellite gravity investigation
2021
[3] Tectonic divisions and accretionary model within Dharwar Craton: New insights from gravity surveys on status of Chitradurga Schist Belt
2021
[4] Gravity of Dharwar Craton, Southern Indian Shield
2020
[5] Characterizing the source of a prominent magnetic anomaly in the southwestern part of the Cuddapah basin
2020
[6] Magnetotelluric investigation of lithospheric electrical structure beneath the Dharwar Craton in south India: Evidence for mantle suture and plume-continental …
2019
[7] Space and Time: Using Paleomagnetism, Geochronology and Numerical Methods to Create and Assess Spatiotemporal Geological Relationships through Earth …
2019
[8] Deep Resistivity signatures across the Chitradurga shear zone of Dharwar craton, India
2017
[9] Geophysical attributes to evaluate subsurface structural features using ground magnetic data in parts of Karimnagar district, Telangana
2017
[10] Mesoproterozoic island arc magmatism along the south-eastern margin of the Indian Plate: Evidence from geochemistry and zircon U-Pb ages of mafic plutonic …
Journal of Asian Earth Sciences, 2016
[11] Mesoproterozoic island arc magmatism along the south-eastern margin of the Indian Plate: Evidence from geochemistry and zircon U-Pb ages of mafic plutonic …
Journal of Asian Earth Sciences, 2016
[12] Plume and Plate Tectonics Model for Formation of some Proterozoic Basins of India along Contemporary Mobile Belts: Mahakoshal—Bijawar, Vindhyan and …
Journal of the Geological Society of India, 2015
[13] Plume and Plate Tectonics Model for Formation of some Proterozoic Basins of India along Contemporary Mobile Belts: Mahakoshal—Bijawar, Vindhyan and …
Journal of the Geological Society of India, 2015
[14] An Alternate Perspective on the Opening and Closing of the Intracratonic Purana Basins in Peninsular India
Geological Society of India, 2015
[15] Plume and Plate Tectonics Model for Formation of Some Proterozoic Basins of India along Contemporary Mobile Belts: Mahakoshal-Bijawar, Vindhyan and Cuddapah Basins
Geological Society of India, 2015
[16] Magnetic Data Interpretation for the Source-Edge Locations in Parts of the Tectonically Active Transition Zone of the Narmada-Son Lineament in Central India
Pure and Applied Geophysics, 2015
[17] Geoelectric Signatures of Palnad Sub Basin and Nallamalai Fold Belt, Cuddapah Basin, India
Geological Society of India, 2015
[18] Interblock zones in the crust of the southern regions of East Siberia: tectonophysical interpretation of geological and geophysical data
2015
[19] МЕЖБЛОКОВЫЕ ЗОНЫ В ЗЕМНОЙ КОРЕ ЮГА ВОСТОЧНОЙ СИБИРИ: ТЕКТОНОФИЗИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ГЕОЛОГОГЕОФИЗИЧЕСКИХ ДАННЫХ
Геодинамика и тектонофизика, 2013
[20] Precambrian sedimentary basins of India: an appraisal of their petroleum potential
Geological Society, London, Special Publications, 2012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.