Journal of Modern Physics

Volume 6, Issue 6 (May 2015)

ISSN Print: 2153-1196   ISSN Online: 2153-120X

Google-based Impact Factor: 0.72  Citations  h5-index & Ranking

On the Curvature of Rotating Objects

HTML  XML Download Download as PDF (Size: 287KB)  PP. 828-836  
DOI: 10.4236/jmp.2015.66087    5,036 Downloads   5,494 Views   Citations
Author(s)

ABSTRACT

In this paper, we investigate a certain property of curvature which differs in a remarkable way between Lorentz geometry and Euclidean geometry. In a certain sense, it turns out that rotating topological objects may have less curvature (as measured by integrating the square of the scalar curvature) than non-rotating ones. This is a consequence of the indefinite metric used in relativity theory. The results in this paper are mainly based of computer computations, and so far there is no satisfactory underlying mathematical theory. Some open problems are presented.

Cite this paper

Tamm, M. (2015) On the Curvature of Rotating Objects. Journal of Modern Physics, 6, 828-836. doi: 10.4236/jmp.2015.66087.

Cited by

[1] Rotating Classical Strings
2017

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.