Journal of Behavioral and Brain Science

Volume 5, Issue 5 (May 2015)

ISSN Print: 2160-5866   ISSN Online: 2160-5874

Google-based Impact Factor: 1.01  Citations  h5-index & Ranking

Kainic Acid, NMDA and Bicuculline Induce Elevation in Concentrations of Glutathione and Amino Acids in Vivo: Biomarkers for Seizure Predisposition?

HTML  XML Download Download as PDF (Size: 498KB)  PP. 163-172  
DOI: 10.4236/jbbs.2015.55017    4,650 Downloads   5,503 Views  Citations
Author(s)

ABSTRACT

The present study was carried out to investigate the effect of NMDA, bicuculline and kainic acid (KA) on the extracellular concentration of glutathione, phosphoethanolamine (PEA) and taurine in rat hippocampus in vivo. Rats were implanted with intrahippocampal microelectrodes perfused with free-glucose Krebs-Ringer solution and allowed to recover for about 2 h. After assaying baseline concentrations of amino acids, NMDA or bicuculline was administered intrahippocampally, whereas KA was given systemically. Either treatment resulted in significant high extracellular concentrations of glutathione, but only NMDA or KA resulted in high concentrations of PEA and taurine. Interestingly, the increase in glutathione concentration due to KA was followed by a delayed increase of glutamate and PEA. Our results demonstrated that increased efflux of glutathione, a common consequence of different neuroexcitotoxic agents, occurs in vivo. Given that the agents used in the present study were also convulsunts, the implication of the findings on seizure predisposition was also considered.

Share and Cite:

Abbas, A. (2015) Kainic Acid, NMDA and Bicuculline Induce Elevation in Concentrations of Glutathione and Amino Acids in Vivo: Biomarkers for Seizure Predisposition?. Journal of Behavioral and Brain Science, 5, 163-172. doi: 10.4236/jbbs.2015.55017.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.