Journal of Power and Energy Engineering

Volume 3, Issue 1 (January 2015)

ISSN Print: 2327-588X   ISSN Online: 2327-5901

Google-based Impact Factor: 1.46  Citations  

Battery Testing with the Calculated Discharge Curve Method-3D Mathematical Model

HTML  XML Download Download as PDF (Size: 3546KB)  PP. 37-52  
DOI: 10.4236/jpee.2015.31004    4,395 Downloads   5,111 Views  

ABSTRACT

The calculated discharge curve method is based on thermodynamically reversible work: The product of the open-circuit voltage, initial current, and time, i.e., the sum of useful energy and energy losses. A calculated discharge curve is based on the constant step change of the battery voltage in correspondence with a cardinal number set. The essential solution is the transformation of the discharge data voltage vs. time into time vs. voltage using basic equations (three-point operators: power of internal resistance and time), which are valid for all battery electrochemical systems, battery designs and discharge conditions. The mono and multi-cell battery operating conditions consist of the following: 1) The four discharge modes by constant loads: resistor, current, voltage, and power; 2) Two load regimes: Self-driving and device-driving (galvanostat, potentiostat) or battery connection (serial, parallel, combine); and 3) Continual and intermittent discharge. The battery average cell and cell/battery average characteristics, regarding time and capacities, are introduced as the new battery characteristics.

Share and Cite:

Djordjevic, A. and Karanovic, D. (2015) Battery Testing with the Calculated Discharge Curve Method-3D Mathematical Model. Journal of Power and Energy Engineering, 3, 37-52. doi: 10.4236/jpee.2015.31004.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.