Journal of Electromagnetic Analysis and Applications

Volume 5, Issue 9 (September 2013)

ISSN Print: 1942-0730   ISSN Online: 1942-0749

Google-based Impact Factor: 0.55  Citations  h5-index & Ranking

MRI-Induced Tissue Heating at Metallic Sutures (Cerclages)

HTML  XML Download Download as PDF (Size: 1099KB)  PP. 354-358  
DOI: 10.4236/jemaa.2013.59056    5,782 Downloads   9,927 Views  Citations

ABSTRACT

Magnetic resonance imaging (MRI) has become an important diagnostic tool with an ongoing dynamic development towards application of increasing static magnetic flux densities and consequently, exposures to electromagnetic fields (EMF) of increasing radio frequencies (RF). This raises particular concern metallic implants could lead to excess tissue heating and consequently, to thermal tissue damage. In thorax surgery the intersected sternum is reconnected by metallic sutures (cerclages). To investigate whether patients with such implants can be accepted for MRI and whether there may be limitations with regard to static magnetic fields, by numerical anatomical and thermal modelling MRI induced tissue heating was assessed for magnetic flux densities 1.5 T, 3 T, 4 T and 7 T. Results show that overall tissue temperature increased with increasing RF EMF frequency. However, even for setting MRI exposure parameters at maximum permissible level partial body heating remained marginally affected and even at local level the additional contribution of the presence of the metallic cerclage remained below 1°C. This allows concluding that from a heating point of view metallic sutures as used to fix the sternum after thorax surgery are no contraindication for MRI with static magnetic flux densities up to 7 T.

Share and Cite:

N. Leitgeb, G. Loos and F. Ebner, "MRI-Induced Tissue Heating at Metallic Sutures (Cerclages)," Journal of Electromagnetic Analysis and Applications, Vol. 5 No. 9, 2013, pp. 354-358. doi: 10.4236/jemaa.2013.59056.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.