Optics and Photonics Journal

Volume 3, Issue 2 (June 2013)

ISSN Print: 2160-8881   ISSN Online: 2160-889X

Google-based Impact Factor: 0.76  Citations  h5-index & Ranking

Effects of Quantum well Size Alteration on Excitonic Population Oscillation Slow Light Devices Properties

HTML  Download Download as PDF (Size: 1238KB)  PP. 298-304  
DOI: 10.4236/opj.2013.32B070    3,830 Downloads   5,968 Views  Citations

ABSTRACT

This paper investigates the effects of quantum well size changes on center frequency and slow down factor of an slow light device. In this way, we consider the quantum well size alteration effects on oscillator strength and binding energy of exciton. First, we investigate the variations in oscillator strength of exciton due to different quantum well size. Second, exciton binding energy level shift due to size of quantum well is investigated. According to this analysis, we have developed a new method for tuning slow light device bandwidth center frequency and slow down factor. Analysis and simulation of a basic GaAs/AlGaAs quantum wells optical slow light device based on excitonic population oscillation shows that size of quantum wells could tune both of the frequency properties and slow down factor of an optical slow light device. In our simulation with 34 quantum wells each with the width of 60?, we have received the slow down factor of more than 60,000. These achievements are useful in optical nonlinearity enhancements, all-optical signal processing applications and optical communications.

Share and Cite:

H. Kaatuzian, H. Shokri Kojori, A. Zandi and R. Kohandani, "Effects of Quantum well Size Alteration on Excitonic Population Oscillation Slow Light Devices Properties," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 298-304. doi: 10.4236/opj.2013.32B070.

Cited by

[1] Investigating Absorption Cross Section and Oscillator Strength for Double Quantum Well with Pöschl-Teller Potential
Generation, Detection and …, 2022
[2] Computing Density of States for Pöschl–Teller Potential in Double Quantum Well Structure
2021
[3] Theoretical Investigation of effects of Size Variations and External Magnetic Field on Binding Energy and Center Frequency in InGaAs/GaAs Quantum Dot Slow Light …
2019
[4] Анализ влияния изменений геометрических размеров и внешнего магнитного поля на оптические свойства замедлителей света на квантовых точках …
2018
[5] Analysis of the influence of geometrical dimensions and external magnetic field on optical properties of InGaAs/GaAs quantum-dot slow light devices
Quantum Electronics, 2018
[6] A theoretical study of the influence of barrier thickness variations on optical properties of a semiconductor multiple quantum well slow light device
Quantum Electronics, 2018
[7] Теоретическое исследование влияния толщины барьера на оптические свойства полупроводникового устройства для замедления света на множественных …
2018
[8] Анализ влияния изменений геометрических размеров и внешнего магнитного поля на оптические свойства замедлителей света на квантовых точках InGaAs …
2018
[9] Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices
Applied Optics, 2017
[10] Analytical Investigation of Slow Light Systems with Strained Quantum Wells Structure under Applied Magnetic and Electric Fields Based on V-type EIT
International Journal of Optics and Applications, 2017
[11] Theoretical analysis of multiple quantum-well, slow-light devices under applied external fields using a fully analytical model in fractional dimension
Quantum Electronics, 2015
[12] Well width and alloy concentration dependence of optical properties of slow light devices
Electrical Engineering (ICEE), 2015 23rd Iranian Conference on, 2015
[13] Теоретический анализ устройств на медленном свете в множественных квантовых ямах, находящихся под действием приложенных внешних полей, с …
2015
[14] Теоретический анализ устройств на медленном свете в множественных квантовых ямах, находящихся под действием приложенных внешних полей, с …
2015

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.