Journal of Cancer Therapy

Volume 4, Issue 5 (July 2013)

ISSN Print: 2151-1934   ISSN Online: 2151-1942

Google-based Impact Factor: 0.30  Citations  h5-index & Ranking

Bicarbonate Attenuates Irinotecan-Induced Cytotoxicity through Regulation of Both Extracellular and Intracellular pHs in Intestine Cell Line

HTML  Download Download as PDF (Size: 604KB)  PP. 944-952  
DOI: 10.4236/jct.2013.45106    3,301 Downloads   5,137 Views  Citations

ABSTRACT

The anti-cancer therapy of irinotecan (CPT-11) is often limited due to severe late-onset diarrhea. Because the higher toxic form of CPT-11/its active metabolite (SN-38) is produced at acidification, the usefulness of oral sodium bicarbonate treatment against the CPT-11/SN-38-induced intestinal injuries and diarrhea has been confirmed. However, the roles of bicarbonate have been suggested to affect not only intestinal pH environment but also intracellular pH and CPT-11/SN-38 dynamics. The present study proposed to clarify the hypothesis in CPT-11/SN-38-exposed colon cell line in various pH conditions adjusted by bicarbonate. HT29 cell pre-exposed to ~1.0 μM SN-38 lactone or carboxylate forms was incubated at different pH adjusted by either bicarbonate or HCl/NaOH. The degrees of SN-38-induced cell injury depended on the higher proportion of the toxic form (lactone) of SN-38 rather than mere pH condition of medium. Apoptosis and cell injury induced by SN-38 were significantly inhibited by bicarbonate in a dose-dependent manner. Intercellular pH acidification induced by SN-38 was significantly prevented by 30 mM bicarbonate. Cell cytotoxicity of SN-38 depended on not only extracellular but also intracellular pH that converts the SN-38 form, while the intracellular acidification was prevented by bicarbonate. The multiple regulations of bicarbonate on both exracellular and intracellular pH would be essential mechanism against intestinal cell injury by CPT-11/SN-38.

Share and Cite:

T. Miyazaki, T. Ikegami, Y. Nagai, A. Nguyen, Y. Matsuzaki, K. Kobayashi and S. Ceryak, "Bicarbonate Attenuates Irinotecan-Induced Cytotoxicity through Regulation of Both Extracellular and Intracellular pHs in Intestine Cell Line," Journal of Cancer Therapy, Vol. 4 No. 5, 2013, pp. 944-952. doi: 10.4236/jct.2013.45106.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.