Journal of Biomedical Science and Engineering

Volume 5, Issue 12 (December 2012)

ISSN Print: 1937-6871   ISSN Online: 1937-688X

Google-based Impact Factor: 0.66  Citations  h5-index & Ranking

Functional imaging of skeletal muscle glucose metabolism by 18FDG PET to characterize insulin resistance in patients at high risk for coronary artery disease

HTML  Download Download as PDF (Size: 360KB)  PP. 819-825  
DOI: 10.4236/jbise.2012.512A103    6,042 Downloads   14,471 Views  Citations

ABSTRACT

Insulin resistance is associated with several coronary risk factors and is thought to play a critical role for the development of coronary artery disease. Insulin resistance has several causes, including an impaired skeletal muscle glucose utilization rate (SMGU), reduced peripheral blood flow, and altered fatty tissue metabolism, with SMGU being considered the most important. Nonetheless, insulin resistance has only been estimated by the glucose disposal rate (GDR) in previous studies. Methods: Skeletal muscle metabolic imaging with 18FDG and positron emission tomography (PET) was undertaken to measure SMGU during hyperinsulinemiceuglycemic clamping in 22 normotensive type-2 diabetics under no medications (T2- DM), 17 normotensive non-diabetic hypertriglyceridemics, 22 patients with hypertension, and 12 agematched controls. Whole body insulin resistance was assessed by the GDR during hyperinsulinemiceuglycemic insulin clamping. Results: The SMGU and GDR were significantly reduced in T2DM (32.1 ± 16.6 μmol/min/kg and 24.3 ± 13.0 μmol/min/kg, respectively), hypertriglyceridemics (36.5 ± 13.5 μmol/min/ kg and 22.7 ± 8.07 μmol/min/kg respectively) and patients with hypertension (35.4 ± 26.6 μmol/min/kg and 29.0 ± 9.90 μmol/min/kg, respectively) compared with controls (72.2 ± 44.1 μmol/min/kg and 43.0 ± 22.9 μmol/min/kg, p < 0.01, respectively). In all groups studied, SMGU was significantly correlated with GDR (r = 0.76, p < 0.01) and GDR (F = 13.9) was independently related to SMGU (r = 0.81, p < 0.01). Conclusion: Insulin resistance is significantly associated with SMGU to a similar degree among patients with T2DM, essential hypertension and hypertriglyceridemia. 18FDG PET functional imaging allows insulin resistance to be assessed.

Share and Cite:

Yokoyama, I. , Moritan, T. and Inoue, Y. (2012) Functional imaging of skeletal muscle glucose metabolism by 18FDG PET to characterize insulin resistance in patients at high risk for coronary artery disease. Journal of Biomedical Science and Engineering, 5, 819-825. doi: 10.4236/jbise.2012.512A103.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.