Journal of Biosciences and Medicines

Volume 12, Issue 5 (May 2024)

ISSN Print: 2327-5081   ISSN Online: 2327-509X

Google-based Impact Factor: 0.51  Citations  

Research Progress of PTCH1 Gene in Lung Cancer

HTML  XML Download Download as PDF (Size: 301KB)  PP. 1-9  
DOI: 10.4236/jbm.2024.125001    48 Downloads   225 Views  
Author(s)

ABSTRACT

Background: The PTCH1 gene, also known as Patched 1, is located on the long arm of human chromosome 9 (9q22.3). It encodes the PTCH1 protein, which is a critical transmembrane receptor within the Hedgehog signaling pathway (Hh), playing a pivotal role in cellular communication and developmental processes. Recent studies have highlighted the significance of mutations in PTCH1 in the pathogenesis of lung cancer, positioning it as a crucial molecule for investigation in oncology. Purpose: This review aims to elucidate the role of the PTCH1 and the Hedgehog pathway in the initiation, progression, and potential treatment of lung cancer, thereby providing a theoretical foundation for personalized and precise therapeutic strategies. Method: To ensure a comprehensive review, this study systematically searched for literature related to the PTCH1, lung cancer, and the Hedgehog pathway across multiple databases including PubMed, Web of Science, and CNKI (China National Knowledge Infrastructure). The search strategy involved using specific keywords and advanced filtering options to include the most relevant and recent studies. Initial screening excluded irrelevant articles, followed by a detailed evaluation of the selected studies based on their scientific quality and relevance. Results: This review indicated that specific mutations in the PTCH1 gene are closely associated with the onset and progression of lung cancer. These mutations impede normal Hedgehog signaling, leading to unregulated cell proliferation and tumor growth. Targeting PTCH1, including vismodegib, have shown efficacy in clinical cases, particularly in SCCL with specific PTCH1 mutations, leading to complete remissions. Furthermore, the interaction between PTCH1 and microRNA-212 suggests potential therapeutic approaches by targeting miRNA to regulate PTCH1 expression. In addition, the investigation of traditional Chinese medicines such as Ginsenosides and Cordyceps sinensis extracts has shown their potential to modulate the Hedgehog pathway and reverse drug resistance. Conclusions: An in-depth understanding of the precise mechanisms by which PTCH1 mutations promote lung cancer could facilitate the development of targeted therapies. This study highlights the potential of PTCH1 as a biomarker for diagnosis and a target for precision medicine in lung cancer treatment, advocating for further research into its molecular pathways and therapeutic applications.

Share and Cite:

Liang, C. and Wang, C. (2024) Research Progress of PTCH1 Gene in Lung Cancer. Journal of Biosciences and Medicines, 12, 1-9. doi: 10.4236/jbm.2024.125001.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.