Journal of High Energy Physics, Gravitation and Cosmology

Volume 10, Issue 2 (April 2024)

ISSN Print: 2380-4327   ISSN Online: 2380-4335

Google-based Impact Factor: 1.31  Citations  

Life Origin in the Milky Way Galaxy: II. Scanning for Habitable Stellar Systems on Behalf of Future Space Missions

HTML  XML Download Download as PDF (Size: 723KB)  PP. 681-692  
DOI: 10.4236/jhepgc.2024.102041    29 Downloads   113 Views  

ABSTRACT

The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.

Share and Cite:

Safronov, A. (2024) Life Origin in the Milky Way Galaxy: II. Scanning for Habitable Stellar Systems on Behalf of Future Space Missions. Journal of High Energy Physics, Gravitation and Cosmology, 10, 681-692. doi: 10.4236/jhepgc.2024.102041.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.