Optics and Photonics Journal

Volume 13, Issue 9 (September 2023)

ISSN Print: 2160-8881   ISSN Online: 2160-889X

Google-based Impact Factor: 0.76  Citations  h5-index & Ranking

Novel Low Viscosity Zinc Oxide, Iron Oxides and Erioglaucine Sunscreen Potential to Protect from Ultraviolet, Visible Light and Near-Infrared Radiation

HTML  XML Download Download as PDF (Size: 531KB)  PP. 217-226  
DOI: 10.4236/opj.2023.139020    78 Downloads   406 Views  

ABSTRACT

Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.

Share and Cite:

Tanaka, Y. , Parker, R. , Aganahi, A. and Pedroso, A. (2023) Novel Low Viscosity Zinc Oxide, Iron Oxides and Erioglaucine Sunscreen Potential to Protect from Ultraviolet, Visible Light and Near-Infrared Radiation. Optics and Photonics Journal, 13, 217-226. doi: 10.4236/opj.2023.139020.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.