Journal of High Energy Physics, Gravitation and Cosmology

Volume 8, Issue 3 (July 2022)

ISSN Print: 2380-4327   ISSN Online: 2380-4335

Google-based Impact Factor: 1.31  Citations  

New Solutions of Tolman-Oppenheimer-Volkov-Equation and of Kerr Spacetime with Matter and the Corresponding Star Models

HTML  XML Download Download as PDF (Size: 5627KB)  PP. 724-767  
DOI: 10.4236/jhepgc.2022.83052    271 Downloads   1,661 Views  
Author(s)

ABSTRACT

The Tolman-Oppenheimer-Volkov (TOV) equation is solved with a new ansatz: the external boundary condition with mass M0 and radius R1 is dual to the internal boundary condition with density ρbc and inner radius ri, and the two boundary conditions yield the same result. The inner boundary condition is imposed with a density ρbc and an inner radius ri, which is zero for the compact neutron stars, but non-zero for the shell-stars: stellar shell-star and galactic (supermassive) shell-star. Parametric solutions are calculated for neutron stars, stellar shell-stars, and galactic shell-stars. From the results, an M-R-relation and mass limits for these star models can be extracted. A new method is found for solving the Einstein equations for Kerr space-time with matter (extended Kerr space-time), i.e. rotating matter distribution in its own gravitational field. Then numerical solutions are calculated for several astrophysical models: white dwarf, neutron star, stellar shell-star, and galactic shell-star. The results are that shell-star star models closely resemble the behaviour of abstract black holes, including the Bekenstein-Hawking entropy, but have finite redshifts and escape velocity v < c and no singularity.

Share and Cite:

Helm, J. (2022) New Solutions of Tolman-Oppenheimer-Volkov-Equation and of Kerr Spacetime with Matter and the Corresponding Star Models. Journal of High Energy Physics, Gravitation and Cosmology, 8, 724-767. doi: 10.4236/jhepgc.2022.83052.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.