Open Journal of Metal

Volume 11, Issue 2 (June 2021)

ISSN Print: 2164-2761   ISSN Online: 2164-277X

Google-based Impact Factor: 0.22  Citations  

Influence of Plastic Deformation and Aging Process on Microstructure and Tensile Properties of Cast Ti-6Al-2Sn-2Zr-2Mo-1.5Cr-2Nb-0.1Si Alloy

HTML  XML Download Download as PDF (Size: 2454KB)  PP. 11-20  
DOI: 10.4236/ojmetal.2021.112002    248 Downloads   790 Views  

ABSTRACT

In the present work, titanium alloy with a composition of Ti-6.5Al-3Mo-1.9Nb-2.2Sn-2.2Zr-1.5Cr (TC21) was subjected to plastic deformation and aging processes. A Plastic deformation at room temperature with 2%, 3% and 4% stroke strain was applied on the studied samples. Then, the samples aged at 575°C for 4 hr. By applying different plastic deformation ratios, the structure revealed an elongated and thin β-phase embedded in an α-phase. Secondary α-platelets were precipitated in the residual β-phase. Maximum hardness (HV440) was obtained for 4% deformed + aged samples. Minimum hardness (HV320) was recorded for the as-cast samples without deformation. The highest ultimate tensile strength of 1311 MPa was obtained for 4% deformed + aged samples due to presence of high amount of dislocation density as well as precipitation of secondary α-platelets in the residual β-phase. The lowest ultimate tensile strength of 1020 MPa was reported for as-cast samples. Maximum elongation of 14% was registered for 4% deformed + aged samples and minimum one of 3% was obtained for as-cast samples. Hence, strain hardening + aging can enhance considerably the elongation of TC21 Ti-alloy up to 366% and 133% in case of applying 4% deformation + aged compared to as-cast and aged samples without applying plastic deformation, respectively.

Share and Cite:

El-Deeb, M. , Ibrahim, K. , Mohamed, S. and Elshaer, R. (2021) Influence of Plastic Deformation and Aging Process on Microstructure and Tensile Properties of Cast Ti-6Al-2Sn-2Zr-2Mo-1.5Cr-2Nb-0.1Si Alloy. Open Journal of Metal, 11, 11-20. doi: 10.4236/ojmetal.2021.112002.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.