[1]
|
Nanoparticles Synthesis by Soil Microbes
2025
DOI:10.1016/B978-0-443-21692-3.00008-2
|
|
|
[2]
|
Nanoparticles: a promising tool against environmental stress in plants
Frontiers in Plant Science,
2025
DOI:10.3389/fpls.2024.1509047
|
|
|
[3]
|
Molecular Impacts of Nanoparticles on Plants and Algae
2024
DOI:10.1016/B978-0-323-95721-2.00009-9
|
|
|
[4]
|
Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?
Functional & Integrative Genomics,
2024
DOI:10.1007/s10142-024-01485-x
|
|
|
[5]
|
Effect of Nano-Zinc Oxide, Rice Straw Compost, and Gypsum on Wheat (Triticum aestivum L.) Yield and Soil Quality in Saline–Sodic Soil
Nanomaterials,
2024
DOI:10.3390/nano14171450
|
|
|
[6]
|
Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture
Microbial Cell Factories,
2024
DOI:10.1186/s12934-024-02528-5
|
|
|
[7]
|
Salt stress alleviation in
Calendula officinalis
L. by potassium nanoparticles application and
Streptomyces
bacteria inoculation
Journal of Plant Nutrition,
2024
DOI:10.1080/01904167.2024.2369074
|
|
|
[8]
|
Effect of the Combined Application of Compost with the Spraying of Some Nano Fertilizers on the Performance of Mango
Sustainability,
2024
DOI:10.3390/su162310239
|
|
|
[9]
|
Nanotechnology-based approaches for promoting horticulture crop growth, antioxidant response and abiotic stresses tolerance
Plant Stress,
2024
DOI:10.1016/j.stress.2023.100337
|
|
|
[10]
|
Deciphering the Role of Nanoparticles in Stimulating Drought and Salinity Tolerance in Plants: Recent Insights and Perspective
Journal of Plant Growth Regulation,
2024
DOI:10.1007/s00344-023-11209-3
|
|
|
[11]
|
Deciphering the Role of Nanoparticles in Stimulating Drought and Salinity Tolerance in Plants: Recent Insights and Perspective
Journal of Plant Growth Regulation,
2024
DOI:10.1007/s00344-023-11209-3
|
|
|
[12]
|
Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges
Plants,
2024
DOI:10.3390/plants13111528
|
|
|
[13]
|
The ameliorating effects of cinnamic acid-based nanocomposite against salt stress in peppermint
Environmental Science and Pollution Research,
2024
DOI:10.1007/s11356-024-34158-0
|
|
|
[14]
|
Molecular Impacts of Nanoparticles on Plants and Algae
2024
DOI:10.1016/B978-0-323-95721-2.00009-9
|
|
|
[15]
|
Plant system, abiotic stress resilience, reactive oxygen species, and coordination of engineered nanomaterials: A review
South African Journal of Botany,
2024
DOI:10.1016/j.sajb.2024.05.053
|
|
|
[16]
|
Enhancing Alfalfa (Medicago sativa L.) Productivity: Exploring the Significance of Potassium Nutrition
Agronomy,
2024
DOI:10.3390/agronomy14081806
|
|
|
[17]
|
Nanotechnology
2024
DOI:10.1007/978-981-97-6814-1_3
|
|
|
[18]
|
The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels
Plants,
2023
DOI:10.3390/plants12020292
|
|
|
[19]
|
Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.107837
|
|
|
[20]
|
Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.107831
|
|
|
[21]
|
Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.107837
|
|
|
[22]
|
Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.107831
|
|
|
[23]
|
Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management
2023
DOI:10.1016/B978-0-323-91933-3.00008-8
|
|
|
[24]
|
Exploring the reinforcing effect of nano-potassium on the antioxidant defense system reflecting the increased yield and quality of salt-stressed squash plants
Scientia Horticulturae,
2023
DOI:10.1016/j.scienta.2022.111609
|
|
|
[25]
|
The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels
Plants,
2023
DOI:10.3390/plants12020292
|
|
|
[26]
|
Environmental Applications of Microbial Nanotechnology
2023
DOI:10.1016/B978-0-323-91744-5.00021-7
|
|
|
[27]
|
Exploring the reinforcing effect of nano-potassium on the antioxidant defense system reflecting the increased yield and quality of salt-stressed squash plants
Scientia Horticulturae,
2023
DOI:10.1016/j.scienta.2022.111609
|
|
|
[28]
|
Alleviation of salt stress complications in plants by nanoparticles and the associated mechanisms: An overview
Plant Stress,
2023
DOI:10.1016/j.stress.2023.100134
|
|
|
[29]
|
Alleviation of salt stress complications in plants by nanoparticles and the associated mechanisms: An overview
Plant Stress,
2023
DOI:10.1016/j.stress.2023.100134
|
|
|
[30]
|
Hybrid Nanomaterials for Sustainable Applications
2023
DOI:10.1016/B978-0-323-98371-6.00010-0
|
|
|
[31]
|
Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.107837
|
|
|
[32]
|
Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.107831
|
|
|
[33]
|
Nano‐enabled stress‐smart agriculture: Can nanotechnology deliver drought and salinity‐smart crops?
Journal of Sustainable Agriculture and Environment,
2023
DOI:10.1002/sae2.12061
|
|
|
[34]
|
Nano‐enabled stress‐smart agriculture: Can nanotechnology deliver drought and salinity‐smart crops?
Journal of Sustainable Agriculture and Environment,
2023
DOI:10.1002/sae2.12061
|
|
|
[35]
|
Effect of Spraying a Combination of Nano-Fertilizers on some Vegetative and Root Growth Characteristics of Two Pomegranate Cultivars under Salt Stress Conditions
IOP Conference Series: Earth and Environmental Science,
2023
DOI:10.1088/1755-1315/1225/1/012032
|
|
|
[36]
|
Salinity and Drought Tolerance in Plants
2023
DOI:10.1007/978-981-99-4669-3_25
|
|
|
[37]
|
Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.107837
|
|
|
[38]
|
Small Tech, Big Impact: Agri-nanotechnology Journey to Optimize Crop Protection and Production for Sustainable Agriculture
Plant Stress,
2023
DOI:10.1016/j.stress.2023.100253
|
|
|
[39]
|
Nanotechnology as a tool for abiotic stress mitigation in horticultural crops
Biologia,
2022
DOI:10.1007/s11756-022-01251-z
|
|
|
[40]
|
Se nanoparticles stabilized with Allamanda cathartica L. flower extract inhibited phytopathogens and promoted mustard growth under salt stress
Heliyon,
2022
DOI:10.1016/j.heliyon.2022.e09076
|
|
|
[41]
|
Assessment of Alfalfa (Medicago sativa L.) Cultivars for Salt Tolerance Based on Yield, Growth, Physiological, and Biochemical Traits
Journal of Plant Growth Regulation,
2022
DOI:10.1007/s00344-021-10499-9
|
|
|
[42]
|
Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application
Horticulturae,
2022
DOI:10.3390/horticulturae8010075
|
|
|
[43]
|
Sustainable Nanotechnology for Environmental Remediation
2022
DOI:10.1016/B978-0-12-824547-7.00014-X
|
|
|
[44]
|
Impact of the foliar application of potassium nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
2022
DOI:10.15835/nbha50112569
|
|
|
[45]
|
Impact of Severe Salt Stress on Morphological, Physiological, and Biochemical Parameters in Alfalfa (Medicago sativa L.)
LAFOBA2,
2022
DOI:10.3390/environsciproc2022016027
|
|
|
[46]
|
Plant Exposure to Engineered Nanoparticles
2022
DOI:10.1016/B978-0-323-85032-2.00001-4
|
|
|
[47]
|
Effect of Nano-Fertilizers on Alfalfa Plants Grown under Different Salt Stresses in Hydroponic System
Agriculture,
2022
DOI:10.3390/agriculture12081113
|
|
|
[48]
|
Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application
Horticulturae,
2022
DOI:10.3390/horticulturae8010075
|
|
|
[49]
|
Impact of Severe Salt Stress on Morphological, Physiological, and Biochemical Parameters in Alfalfa (Medicago sativa L.)
The 2nd International Laayoune Forum on Biosaline Agriculture,
2022
DOI:10.3390/environsciproc2022016027
|
|
|
[50]
|
Effect of Nano-Fertilizers on Alfalfa Plants Grown under Different Salt Stresses in Hydroponic System
Agriculture,
2022
DOI:10.3390/agriculture12081113
|
|
|
[51]
|
Se nanoparticles stabilized with Allamanda cathartica L. flower extract inhibited phytopathogens and promoted mustard growth under salt stress
Heliyon,
2022
DOI:10.1016/j.heliyon.2022.e09076
|
|
|
[52]
|
Nanoparticles potentially mediate salt stress tolerance in plants
Plant Physiology and Biochemistry,
2021
DOI:10.1016/j.plaphy.2021.01.028
|
|
|
[53]
|
Sustainable Agriculture Reviews 53
Sustainable Agriculture Reviews,
2021
DOI:10.1007/978-3-030-86876-5_8
|
|
|
[54]
|
Nanoparticles potentially mediate salt stress tolerance in plants
Plant Physiology and Biochemistry,
2021
DOI:10.1016/j.plaphy.2021.01.028
|
|
|
[55]
|
Plant Performance Under Environmental Stress
2021
DOI:10.1007/978-3-030-78521-5_15
|
|
|
[56]
|
In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress
Plant Cell Reports,
2021
DOI:10.1007/s00299-020-02613-0
|
|
|
[57]
|
Nanoparticles potentially mediate salt stress tolerance in plants
Plant Physiology and Biochemistry,
2021
DOI:10.1016/j.plaphy.2021.01.028
|
|
|
[58]
|
Impacts of nano- and non-nanofertilizers on potato quality and productivity
Acta Ecologica Sinica,
2020
DOI:10.1016/j.chnaes.2019.12.007
|
|
|
[59]
|
Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.)
Acta Physiologiae Plantarum,
2020
DOI:10.1007/s11738-019-2993-8
|
|
|
[60]
|
New and Future Developments in Microbial Biotechnology and Bioengineering
2019
DOI:10.1016/B978-0-444-64191-5.00007-9
|
|
|
[61]
|
Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles
Plants,
2019
DOI:10.3390/plants8060151
|
|
|
[62]
|
Temporal Impacts of Different Fertilization Systems on Soil Health under Arid Conditions of Potato Monocropping
Journal of Soil Science and Plant Nutrition,
2019
DOI:10.1007/s42729-019-00110-2
|
|
|
[63]
|
Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity
Agronomy,
2019
DOI:10.3390/agronomy10010019
|
|
|
[64]
|
Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles
Plants,
2019
DOI:10.3390/plants8060151
|
|
|
[65]
|
Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity
Agronomy,
2019
DOI:10.3390/agronomy10010019
|
|
|
[66]
|
Salinity Responses and Tolerance in Plants, Volume 1
2018
DOI:10.1007/978-3-319-75671-4_4
|
|
|
[67]
|
Plant Nutrients and Abiotic Stress Tolerance
2018
DOI:10.1007/978-981-10-9044-8_14
|
|
|
[68]
|
Nanobiotechnology Applications in Plant Protection
Nanotechnology in the Life Sciences,
2018
DOI:10.1007/978-3-319-91161-8_4
|
|
|