[1]
|
Advancing lignocellulosic biomass pretreatment with nanotechnology: a comprehensive bibliometric analysis
Cellulose,
2025
DOI:10.1007/s10570-025-06403-3
|
|
|
[2]
|
Biomass Conversion through Nanomaterials
2025
DOI:10.1016/B978-0-443-24748-4.00013-1
|
|
|
[3]
|
Nano-based biofuel production from low-cost lignocellulose biomass: environmental sustainability and economic approach
Bioprocess and Biosystems Engineering,
2024
DOI:10.1007/s00449-024-03005-4
|
|
|
[4]
|
A Catalyst‐Like System Enables Efficient Perovskite Solar Cells
Advanced Materials,
2024
DOI:10.1002/adma.202311145
|
|
|
[5]
|
A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material
Electronic Materials Letters,
2024
DOI:10.1007/s13391-023-00454-z
|
|
|
[6]
|
A Catalyst‐Like System Enables Efficient Perovskite Solar Cells
Advanced Materials,
2024
DOI:10.1002/adma.202311145
|
|
|
[7]
|
Fabrication of 3-(trihydroxysilyl)-1-propanesulfonic acid membranes with superior affinity and selectivity for NH3 permeation over H2 and N2 at 50–300 °C
Journal of Membrane Science,
2024
DOI:10.1016/j.memsci.2024.122798
|
|
|
[8]
|
Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach
Bioresource Technology,
2023
DOI:10.1016/j.biortech.2022.128471
|
|
|
[9]
|
Enhanced Four‐Electron Selective Oxygen Reduction Reaction at Carbon‐Nanotube‐Supported Sulfonic‐Acid‐Functionalized Copper Phthalocyanine
ChemPhysChem,
2023
DOI:10.1002/cphc.202300117
|
|
|
[10]
|
Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol
Catalysts,
2023
DOI:10.3390/catal13111439
|
|
|
[11]
|
Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach
Bioresource Technology,
2023
DOI:10.1016/j.biortech.2022.128471
|
|
|
[12]
|
Advances in Lignocellulosic Biofuel Production Systems
2023
DOI:10.1016/B978-0-323-91192-4.00008-0
|
|
|
[13]
|
Nanotechnology for Biorefinery
2023
DOI:10.1016/B978-0-323-95965-0.00011-1
|
|
|
[14]
|
Advances in Lignocellulosic Biofuel Production Systems
2023
DOI:10.1016/B978-0-323-91192-4.00008-0
|
|
|
[15]
|
A Review on Role of Nanomaterials in Bioconversion of Sustainable Fuel Bioethanol
Waste and Biomass Valorization,
2022
DOI:10.1007/s12649-022-01843-5
|
|
|
[16]
|
Lignocellulose biohydrogen towards net zero emission: A review on recent developments
Bioresource Technology,
2022
DOI:10.1016/j.biortech.2022.128084
|
|
|
[17]
|
Production of Therapeutically Significant Genistein and Daidzein Compounds from Soybean Glycosides Using Magnetic Nanocatalyst: A Novel Approach
Catalysts,
2022
DOI:10.3390/catal12101107
|
|
|
[18]
|
Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery – A review
Bioresource Technology,
2022
DOI:10.1016/j.biortech.2021.126171
|
|
|
[19]
|
Lignocellulose biohydrogen towards net zero emission: A review on recent developments
Bioresource Technology,
2022
DOI:10.1016/j.biortech.2022.128084
|
|
|
[20]
|
Lignocellulose biohydrogen towards net zero emission: A review on recent developments
Bioresource Technology,
2022
DOI:10.1016/j.biortech.2022.128084
|
|
|
[21]
|
Lignocellulosic Biomass in Biotechnology
2022
DOI:10.1016/B978-0-12-821889-1.00004-7
|
|
|
[22]
|
Handbook of Biofuels
2022
DOI:10.1016/B978-0-12-822810-4.00010-5
|
|
|
[23]
|
Propylsulfonic Acid-Functionalized Mesostructured Natural Rubber/Silica Nanocomposites as Promising Hydrophobic Solid Catalysts for Alkyl Levulinate Synthesis
Nanomaterials,
2022
DOI:10.3390/nano12040604
|
|
|
[24]
|
Microbial Biotechnology for Renewable and Sustainable Energy
Clean Energy Production Technologies,
2022
DOI:10.1007/978-981-16-3852-7_8
|
|
|
[25]
|
Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery – A review
Bioresource Technology,
2022
DOI:10.1016/j.biortech.2021.126171
|
|
|
[26]
|
Propylsulfonic Acid-Functionalized Mesostructured Natural Rubber/Silica Nanocomposites as Promising Hydrophobic Solid Catalysts for Alkyl Levulinate Synthesis
Nanomaterials,
2022
DOI:10.3390/nano12040604
|
|
|
[27]
|
Production of Therapeutically Significant Genistein and Daidzein Compounds from Soybean Glycosides Using Magnetic Nanocatalyst: A Novel Approach
Catalysts,
2022
DOI:10.3390/catal12101107
|
|
|
[28]
|
Lignocellulose biohydrogen towards net zero emission: A review on recent developments
Bioresource Technology,
2022
DOI:10.1016/j.biortech.2022.128084
|
|
|
[29]
|
Optimizing the surface distribution of acid sites for cooperative catalysis in condensation reactions promoted by water
Chem Catalysis,
2021
DOI:10.1016/j.checat.2021.08.005
|
|
|
[30]
|
Pretreatment of Switchgrass for Production of Glucose via Sulfonic Acid-Impregnated Activated Carbon
Processes,
2021
DOI:10.3390/pr9030504
|
|
|
[31]
|
Optimizing the surface distribution of acid sites for cooperative catalysis in condensation reactions promoted by water
Chem Catalysis,
2021
DOI:10.1016/j.checat.2021.08.005
|
|
|
[32]
|
Pretreatment of Switchgrass for Production of Glucose via Sulfonic Acid-Impregnated Activated Carbon
Processes,
2021
DOI:10.3390/pr9030504
|
|
|
[33]
|
Dye photostabilization on TiO2 capped with 4-styrenesulfonic acid plasma
Materials Letters,
2021
DOI:10.1016/j.matlet.2021.129738
|
|
|
[34]
|
Dye photostabilization on TiO2 capped with 4-styrenesulfonic acid plasma
Materials Letters,
2021
DOI:10.1016/j.matlet.2021.129738
|
|
|
[35]
|
Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production
Materials Science for Energy Technologies,
2020
DOI:10.1016/j.mset.2020.09.006
|
|
|
[36]
|
Substrate Analysis for Effective Biofuels Production
Clean Energy Production Technologies,
2020
DOI:10.1007/978-981-32-9607-7_7
|
|
|
[37]
|
Acid-functionalized magnetic nanocatalysts mediated pretreatment of sugarcane straw: an eco-friendly and cost-effective approach
Cellulose,
2020
DOI:10.1007/s10570-020-03262-y
|
|
|
[38]
|
A sulfonated mesoporous silica nanoparticle for enzyme protection against denaturants and controlled release under reducing conditions
Journal of Colloid and Interface Science,
2019
DOI:10.1016/j.jcis.2019.08.063
|
|
|
[39]
|
Catalytic hydrolysis of cellobiose using different acid-functionalised Fe3O4 magnetic nanoparticles
IET Nanobiotechnology,
2019
DOI:10.1049/iet-nbt.2019.0181
|
|
|
[40]
|
Leveraging Nanoparticle Dispersion State To Tune Vanadium Ion Selectivity of Nanophase-Segregated Ionomer Nanocomposites for Redox Flow Batteries
ACS Applied Energy Materials,
2019
DOI:10.1021/acsaem.9b01443
|
|
|
[41]
|
New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass
Biofuels, Bioproducts and Biorefining,
2019
DOI:10.1002/bbb.1965
|
|
|
[42]
|
Leveraging Nanoparticle Dispersion State To Tune Vanadium Ion Selectivity of Nanophase-Segregated Ionomer Nanocomposites for Redox Flow Batteries
ACS Applied Energy Materials,
2019
DOI:10.1021/acsaem.9b01443
|
|
|
[43]
|
Role of Surface Chemistry on Nanoparticle Dispersion and Vanadium Ion Crossover in Nafion Nanocomposite Membranes
ACS Applied Materials & Interfaces,
2018
DOI:10.1021/acsami.8b11297
|
|
|
[44]
|
Role of Surface Chemistry on Nanoparticle Dispersion and Vanadium Ion Crossover in Nafion Nanocomposite Membranes
ACS Applied Materials & Interfaces,
2018
DOI:10.1021/acsami.8b11297
|
|
|
[45]
|
TiO2@TDI@DMAPA: an amine-modified nanoparticle, tailored to act as an economic basic heterogeneous nanocatalyst
Journal of Nanoparticle Research,
2018
DOI:10.1007/s11051-018-4224-4
|
|
|
[46]
|
New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass
Biofuels, Bioproducts and Biorefining,
2018
DOI:10.1002/bbb.1965
|
|
|
[47]
|
Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid
Industrial Crops and Products,
2016
DOI:10.1016/j.indcrop.2016.02.039
|
|
|