|
[1]
|
Understanding mechanisms for differential salinity tissue tolerance between quinoa and spinach: Zooming on ROS-inducible ion channels
The Crop Journal,
2024
DOI:10.1016/j.cj.2024.03.001
|
|
|
|
|
[2]
|
Understanding mechanisms for differential salinity tissue tolerance between quinoa and spinach: Zooming on ROS-inducible ion channels
The Crop Journal,
2024
DOI:10.1016/j.cj.2024.03.001
|
|
|
|
|
[3]
|
Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses
BMC Plant Biology,
2024
DOI:10.1186/s12870-024-05184-4
|
|
|
|
|
[4]
|
Thriving under Salinity: Growth, Ecophysiology and Proteomic Insights into the Tolerance Mechanisms of Obligate Halophyte Suaeda fruticosa
Plants,
2024
DOI:10.3390/plants13111529
|
|
|
|
|
[5]
|
Understanding mechanisms for differential salinity tissue tolerance between quinoa and spinach: Zooming on ROS-inducible ion channels
The Crop Journal,
2024
DOI:10.1016/j.cj.2024.03.001
|
|
|
|
|
[6]
|
Comparison of Halophyte and Glycophyte Plants from the Amaranthaceae-Chenopodiaceae Family in Their Ion-Exchange Properties of Polymeric Matrix of Cell Walls
Russian Journal of Plant Physiology,
2023
DOI:10.1134/S102144372370019X
|
|
|
|
|
[7]
|
Comparison of Halophyte and Glycophyte Plants from the Amaranthaceae-Chenopodiaceae Family in Their Ion-Exchange Properties of Polymeric Matrix of Cell Walls
Физиология растений,
2023
DOI:10.31857/S0015330323600316
|
|
|
|
|
[8]
|
The Efficiency of Humic Acid for Improving Salinity Tolerance in Salt Sensitive Rice (Oryza sativa): Growth Responses and Physiological Mechanisms
Gesunde Pflanzen,
2023
DOI:10.1007/s10343-023-00885-6
|
|
|
|
|
[9]
|
Comparison of Halophyte and Glycophyte Plants from the Amaranthaceae-Chenopodiaceae Family in Their Ion-Exchange Properties of Polymeric Matrix of Cell Walls
Russian Journal of Plant Physiology,
2023
DOI:10.1134/S102144372370019X
|
|
|
|
|
[10]
|
The Efficiency of Humic Acid for Improving Salinity Tolerance in Salt Sensitive Rice (Oryza sativa): Growth Responses and Physiological Mechanisms
Gesunde Pflanzen,
2023
DOI:10.1007/s10343-023-00885-6
|
|
|
|
|
[11]
|
Silicic and Humic Acid Priming Improves Micro- and Macronutrient Uptake, Salinity Stress Tolerance, Seed Quality, and Physio-Biochemical Parameters in Lentil (Lens culinaris spp. culinaris)
Plants,
2023
DOI:10.3390/plants12203539
|
|
|
|
|
[12]
|
Anatomical and physiological features modulate ion homeostasis and osmoregulation in aquatic halophyte Fimbristylis complanata (Retz.) link
Acta Physiologiae Plantarum,
2022
DOI:10.1007/s11738-022-03400-y
|
|
|
|
|
[13]
|
Halophytic Plants for Animal Feed: Associated Botanical and Nutritional Characteristics
2022
DOI:10.2174/9789815050387122010016
|
|
|
|
|
[14]
|
Physiological analysis reveals relatively higher salt tolerance in roots of Ilex integra than in those of Ilex purpurea
Journal of Forestry Research,
2022
DOI:10.1007/s11676-021-01386-w
|
|
|
|
|
[15]
|
Morphogenesis and cell wall composition of trichomes and their function in response to salt in halophyte Salsola ferganica
BMC Plant Biology,
2022
DOI:10.1186/s12870-022-03933-x
|
|
|
|
|
[16]
|
Physiological analysis reveals relatively higher salt tolerance in roots of Ilex integra than in those of Ilex purpurea
Journal of Forestry Research,
2022
DOI:10.1007/s11676-021-01386-w
|
|
|
|
|
[17]
|
Growth regulation of Desmostachya bipinnata by organ-specific biomass, water relations, and ion allocation responses to improve salt resistance
Acta Physiologiae Plantarum,
2021
DOI:10.1007/s11738-021-03211-7
|
|
|
|
|
[18]
|
Handbook of Halophytes
2021
DOI:10.1007/978-3-030-57635-6_98
|
|
|
|
|
[19]
|
Seed priming with gibberellic acid induces high salinity tolerance in
Pisum sativum
through antioxidants, secondary metabolites and up‐regulation of antiporter genes
Plant Biology,
2021
DOI:10.1111/plb.13187
|
|
|
|
|
[20]
|
Handbook of Halophytes
2020
DOI:10.1007/978-3-030-17854-3_98-1
|
|
|
|
|
[21]
|
Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes
2019
DOI:10.1007/978-981-13-3762-8_6
|
|
|
|
|
[22]
|
Differential protein expression reveals salt tolerance mechanisms of Desmostachya bipinnata at moderate and high levels of salinity
Functional Plant Biology,
2018
DOI:10.1071/FP17281
|
|
|
|
|
[23]
|
Sodium chloride accumulation in glycophyte plants with cyanobacterial symbionts
AoB PLANTS,
2017
DOI:10.1093/aobpla/plx053
|
|
|
|
|
[24]
|
Impact of Repetitive Salt Shocks on Seedlings of the Halophyte Cakile maritima
Environment Control in Biology,
2016
DOI:10.2525/ecb.54.23
|
|
|
|
|
[25]
|
Phytoextraction of heavy metals bySesuvium portulacastruml. a salt marsh halophyte from tannery effluent
International Journal of Phytoremediation,
2016
DOI:10.1080/15226514.2015.1109606
|
|
|
|
|
[26]
|
Salt effects on proline and glycine betaine levels and photosynthetic performance in Melilotus siculus, Tecticornia pergranulata and Thinopyrum ponticum measured in simulated saline conditions
Functional Plant Biology,
2016
DOI:10.1071/FP15330
|
|
|
|
|
[27]
|
An Ex Situ Salinity Restoration Assessment Using Legume, Saltbush, and Grass in Australian Soil
CLEAN - Soil, Air, Water,
2016
DOI:10.1002/clen.201500214
|
|
|
|
|
[28]
|
An Ex Situ Salinity Restoration Assessment Using Legume, Saltbush, and Grass in Australian Soil
CLEAN – Soil, Air, Water,
2016
DOI:10.1002/clen.201500214
|
|
|
|
|
[29]
|
Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus
Plant, Cell & Environment,
2015
DOI:10.1111/pce.12428
|
|
|
|
|
[30]
|
Physiological response and ion accumulation in two grasses, one legume, and one saltbush under soil water and salinity stress
Ecohydrology,
2015
DOI:10.1002/eco.1603
|
|
|
|
|
[31]
|
Physiological and proteomic analyses of salt stress response in the halophyteHalogeton glomeratus
Plant, Cell & Environment,
2015
DOI:10.1111/pce.12428
|
|
|
|
|
[32]
|
Physiological response and ion accumulation in two grasses, one legume, and one saltbush under soil water and salinity stress
Ecohydrology,
2015
DOI:10.1002/eco.1603
|
|
|
|
|
[33]
|
Evaluation of potential cationic probes for the detection of proline and betaine
ELECTROPHORESIS,
2014
DOI:10.1002/elps.201400303
|
|
|
|
|
[34]
|
Evaluation of potential cationic probes for the detection of proline and betaine
ELECTROPHORESIS,
2014
DOI:10.1002/elps.201400303
|
|
|
|