Analysis of trans tibial prosthetic socket materials using finite element method

HTML  Download Download as PDF (Size: 3484KB)  PP. 762-768  
DOI: 10.4236/jbise.2011.412094    8,373 Downloads   15,791 Views  Citations

Affiliation(s)

.

ABSTRACT

The objective of this work was to analyze in a parametric study for optimum design solution of prosthetic socket material by finite element method. A realistic three-dimensional finite element model of the PTB socket was developed to find out the stress distribution pattern under physiologically relevant loading condition during normal walking. The CAD model of the rectified socket was collected from a CMET 250 non-tactile high accuracy (0.06 mm) white light scanner and analyses were carried out using finite element Method in ANSYS®. All structural materials used in the analysis were assumed to be linearly elastic, homogeneous and isotropic. Different materials were used for socket and only polypropylene was used for socket adopter. Analysis was prepared at 2 mm, 3 mm, 4 mm, 5 mm & 6 mm thickness of socket in different materials commonly used in developing countries. The bottom line of socket was made to zero displacement constraints and vertical loads in relation to stance phase of gait cycle were applied under static condition at the patella tendon brim. The 3 mm laminated composite sockets was found to be optimum in terms of strength, weight and factor of safety.

Share and Cite:

Lenka, P. and Choudhury, A. (2011) Analysis of trans tibial prosthetic socket materials using finite element method. Journal of Biomedical Science and Engineering, 4, 762-768. doi: 10.4236/jbise.2011.412094.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.