Development of a Three-Layer Steady State Vertical Dissolved Oxygen Model in Grand Lake, Oklahoma

HTML  XML Download Download as PDF (Size: 5356KB)  PP. 448-467  
DOI: 10.4236/nr.2018.912028    797 Downloads   1,785 Views  Citations

ABSTRACT

Grand Lake O’The Cherokees, the third largest reservoir located in northeastern Oklahoma, provides recreational services, water supply, hydroelectric power, and flood control to residents of Oklahoma and neighboring states. Grand Lake has experienced major problems with eutrophication, harmful algal blooms, and dissolved oxygen (DO) depletion during summer. To better understand the dynamics of DO depletion in the hypolimnion of Grand Lake, a three-layer steady state vertical DO model for summer-stratified conditions was used to investigate dissolved oxygen profiles both above and below the thermocline. The DO model was used to determine the relative effects of atmospheric reaeration and phytoplankton production as a source of DO and phytoplankton respiration, decomposition of organic matter, and nitrification as loss terms for DO. Additionally, the importance of sediment oxygen demand (SOD) for hypolimnetic oxygen depletion was investigated at the sediment water-interface under stratified conditions. Observed water quality data, kinetic coefficients from the literature, and physical, biological, and chemical data collected throughout 2013 and 2015 along the spatial gradient of riverine, transition, lacustrine zones and a site close to the Grand Lake Pensacola Dam were used in the pre-processing calculations to derive estimates of kinetic rates as input parameters to the model. The estimated predictions from the model showed reasonable agreement with the observed vertical profiles of DO. Conclusions from this study indicate that phytoplankton production, high light limitation, and phosphorus were the major terms that controlled DO production in the surface layer, while nitrification and organic carbon decomposition were the major sinks of DO consumption in the bottom layer. Interestingly, SOD did not play a significant role in DO depletion in the water column.

Share and Cite:

Borsuah, J. , Stoodley, S. , Storm, D. , Dzialowski, A. and Stoddard, A. (2018) Development of a Three-Layer Steady State Vertical Dissolved Oxygen Model in Grand Lake, Oklahoma. Natural Resources, 9, 448-467. doi: 10.4236/nr.2018.912028.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.