Structural Role of Cerium Oxide in Lead Silicate Glasses and Glass Ceramics

HTML  XML Download Download as PDF (Size: 1262KB)  PP. 438-447  
DOI: 10.4236/jmmce.2018.63031    921 Downloads   2,251 Views  Citations

ABSTRACT

Silicate glasses and glass ceramics in the system CeO2-PbO-SiO2 have been studied as a function of the structure factors R and K. The latter two factors are defined as: R = (CeO2 + PbO)/SiO2 and K = (SiO2/CeO2) molar ratios. In this glass, PbO is fixed at 50 mol% and CeO2 increases at the expense of SiO2. NMR investigations have revealed that increasing R which is accompanied with decreasing K leads to reasonable decrease in the shielding of silicon atoms. The chemical shift (δ) showed an increasing behavior due to increasing non-bridging oxygen atoms (NBO) in silicate network. It is evidenced that NBO in cerium free glass is much lower than that of glasses containing CeO2. Increasing R is clearly leading to higher chemical shift and higher NBO. This reflects that CeO2 has an effective structural role, since it would be consumed in all cases as an intermediate oxide. The main portions from CeO2 and PbO inter as glass modifiers which are consumed to form NBO atoms. A limited portion of CeO2 acts as glass former which consumed to form tetrahedral cerium containing NBO due to modification by PbO as a modifier oxide. Increasing R = [(CeO2 + PbO)/SiO2] from 1 to 2.34 leads to a frequent increase of NBO in the average glass network. FTIR spectroscopy of the glasses showed a clear shift of the main absorbance peak toward the low wavenumber with increasing R which confirms the increasing silicate units containing NBO atoms. XRD of the investigated materials revealed the presence of some nanostructures from cerium silicate crystalline phases. Formation of separated phases containing micro clusters is found to depend on NBO concentration, since NBO can facilitate process of phase separation. Majority of modifier are consumed to form NBO in the glass network and the rest are aggregated or separated to form silicate phase riches with cerium cations. In such case, some of silicon atoms are electrically compensated with both Pb and Ce cations.

Share and Cite:

El-Damrawi, G. and Behairy, A. (2018) Structural Role of Cerium Oxide in Lead Silicate Glasses and Glass Ceramics. Journal of Minerals and Materials Characterization and Engineering, 6, 438-447. doi: 10.4236/jmmce.2018.63031.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.