Application of in-house method for determinationof radium isotopes in environmental samples usingthe Liquid Scintillation counting technique

Download Download as PDF (Size: 570KB)  PP. 1-8  
DOI: 10.4236/jasmi.2011.11001    3,933 Downloads   11,031 Views  Citations

Affiliation(s)

.

ABSTRACT

A method for determination of 226Ra and 228Ra in environmental samples using the α-β coincidence liquid scintillation counting (LSC) has been developed. Radium were preconcentrated from environmental samples by coprecipitation with BaSO4, then purified from others radionuclide interferences using the cation column exchange (Bio-Rad AG 50 W-X4 resin with 200-400 mesh size and H+ form) and operating in warm temperature which is between 70-80oC. Then, the Ba(Ra)SO4 precipitate was filtered through the Millipore filter paper, dried and weighed to calculate chemical yield. The activity concentration of radium isotopes in mixture of liquid scintillation cocktails were measured using LSC after being stored for over 21 days to allow the growth of the progeny nuclides. The method has been validated with a certi-fied reference material supplied by the International Atomic Energy Agency and reliable results were obtained. The radiochemical yields for radium were 59% - 90% and recovery was 97% and 80% for 226Ra and 228Ra, respectively. Sixteen seawater and fish flesh samples collected in Kapar coastal water have been analyzed with the developed method. The obtained radium activity concentrations in seawater were in the range of 02.08 ± 0.82 mBq/L to 3.69 ± 1.29 mBq/L for 226Ra and 6.01 ± 3.05 mBq/L to 17.07 ± 6.62 mBq/L for 228Ra. Meanwhile, the activity concentrations of 226Ra and 228Ra in fish flesh were in the range of 11.82 ± 5.23 – 16.53 ± 6.53 Bq/kg dry wt. and 43.52 ± 16.34 – 53.57 ± 19.86 Bq/kg dry wt., respectively.

Share and Cite:

N. Ariffin, Z. Mahmood and C. Mohamed, "Application of in-house method for determinationof radium isotopes in environmental samples usingthe Liquid Scintillation counting technique," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 1 No. 1, 2011, pp. 1-8. doi: 10.4236/jasmi.2011.11001.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.